Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethers acyclic vinyl

In a more recent work the same research group has applied cyclic and acyclic vinyl ethers in the oxazaborolidinone-catalyzed 1,3-dipolar cycloaddition reaction with nitrones [30]. The reaction between nitrone 5 and 2,3-dihydrofuran 6 with 20 mol% of the phenyl glycine-derived catalyst 3c, gave the product 7 in 56% yield as the sole diastereomer, however, with a low ee of 38% (Scheme 6.9). [Pg.219]

Falbe and Korte (90) studied the cobalt hydroformylation of dihydro-pyran and its derivatives. The reactions were conducted at temperatures above 180°C, with pressures of 300 atm of 1/1 H2/CO. Under these conditions, the initially formed aldehydes were hydrogenated to the alcohols in situ. As noted with acyclic vinyl ethers, formyl attachment was predominantly a. [Pg.43]

Bach and coworkers observed both regioselective and stereoselective oxetane formation during the PB reaction of acyclic vinyl ethers (Scheme 7.26) [15n], The stereoselectivity observed for such photochemical reactions cannot be explained using the Griesbeck Model, even though triplet, 14-biradicals were proposed as intermediates. Thus, the stereoselectivity was proposed to be largely dependent on product stability. [Pg.230]

As an extension of this work, photoinduced [2+2]-cycloadditions of 1-acetylisatin (13) with cyclic enolethers (furan, benzofuran, 2-phenylfuran, 8-methoxypsoralen), and acyclic enolethers (//-butyl vinyl ether and vinyl acetate) were investigated which afforded the spiro-oxetanes in high yields (82-96%) and with high regio- and diastereoselectivity (Sch. 4) [19]. Treatment of the furan-derived oxetane 15 with acid resulted in oxetane ring opening and yielded the 3-(furan-3-yl)indole derivative 16. [Pg.93]

Reactions of organic halides mediated by transition metal compounds 1321 TABLE 1. Factors influencing regioselectivity in arylation of acyclic vinyl ethers... [Pg.1321]

The formation of vinyl cations has also been observed [61]. The acyclic vinyl iodide (24) was irradiated at 254 nm in CH3OH. This afforded reduction, nucleophilic-trapping, and allene intermediate products (Scheme 18). In the presence of CH3OD the allylic ether had 72% incorporation of deuterium at the vinylic position. On irradiation in CH2C12 or pentane, reduction and 1,3-diene product were observed. [Pg.75]

Thus, the rearrangement of cyclic vinyl acetals of type 1 yields tetrahydrofuran-3-carbaldehydes 2, 3), which are useful precursors in the synthesis of polyether antibiotics. The rearrangement of acyclic vinyl acetals (4) produces the aldol ethers Sand 6 stereoselectively. E. g., star-tingwiththe 1,3-dioxolanyl vinyl acetal7or the 1,3-dioxanyl vinyl acetalft the aldehydes 12are obtained, which contain the 1,2- and the 1,3-diol structural subunit... [Pg.311]

Details of the reductive rearrangement of glyc-2-enopyranosides to give 3-deoxyglycal derivatives and acyclic vinyl ethers have been reported (see Vol. 4, p. 95). The work was extended to other allylic derivatives, and the reaction pathways were investigated by means of deuterium-labelling techniques. [Pg.91]

The Pd(PhCN)2Cl2-catalyzed reaction of cyclic enol ethers with allylic alcohols gave the Claisen rearrangement products a-allylic cyclic ketones (eqs 183 and 184). The same reaction of acyclic vinylic ethers with allyl alcohols afforded the corresponding y,i5-unsaturated enones (eqs 185 and 186).i In most cases, CF3COOH was used as the cocatalyst. [Pg.86]

The reaction of a,co-diyne with monoene instead of monoyne also gave an aromatic compound (Scheme 5.4) [9], The reaction included cleavage of a C—O bond. Diyne 7 reacted with 50 equiv of 2,3-dihydrofuran to give aromatic alcohol 8 in 97% yield. Acyclic vinyl ether such as n-butyl vinyl ether could be used in place of 2,3-dihydrofuran. The reaction of 7 with 25 equiv of n-butyl vinyl ether gave 9 and 10. The combined yield was nearly quantitative. n-Butyl vinyl ether acted as an acetylene equivalent when the reaction gave 9. Based on this result, an enol ether could be used as an acetylene equivalent in Rh-catalyzed [2 -j- 2 -j- 2] cycloaddition [11]. [Pg.164]

The chiral BOX-copper(ll) complexes, (S)-21a and (l )-21b (X=OTf, SbFg), were found by Evans et al. to catalyze the enantioselective cycloaddition reactions of the a,/ -unsaturated acyl phosphonates 49 with ethyl vinyl ether 46a and the cyclic enol ethers 50 giving the cycloaddition products 51 and 52, respectively, in very high yields and ee as outlined in Scheme 4.33 [38b]. It is notable that the acyclic and cyclic enol ethers react highly stereoselectively and that the same enantiomer is formed using (S)-21a and (J )-21b as the catalyst. It is, furthermore, of practical importance that the cycloaddition reaction can proceed in the presence of only 0.2 mol% (J )-21a (X=SbF6) with minimal reduction in the yield of the cycloaddition product and no loss of enantioselectivity (93% ee). [Pg.179]

In an analogous study by Meske, the impact of various oxazaborolidinone catalysts for the 1,3-dipolar cycloaddition reactions between acyclic nitrones and vinyl ethers was studied [31]. Both the diastereo- and the enantioselectivities obtained in this work were low. The highest enantioselectivity was obtained by the application of 100 mol% of the tert-butyl-substituted oxazaborolidinone catalyst 3d [27, 32] in the 1,3-dipolar cycloaddition reaction between nitrone la and ethyl vinyl ether 8a giving endo-9a and exo-9a in 42% and 27% isolated yield, respectively, with up to 20% ee for endo-9a as the best result (Scheme 6.10). [Pg.219]

The above described reaction has been extended to the application of the AlMe-BINOL catalyst to reactions of acyclic nitrones. A series chiral AlMe-3,3 -diaryl-BINOL complexes llb-f was investigated as catalysts for the 1,3-dipolar cycloaddition reaction between the cyclic nitrone 14a and ethyl vinyl ether 8a [34], Surprisingly, these catalysts were not sufficiently selective for the reactions of cyclic nitrones with ethyl vinyl ether. Use of the tetramethoxy-substituted derivative llg as the catalyst for the reaction significantly improved the results (Scheme 6.14). In the presence of 10 mol% llg the reaction proceeded in a mixture of CH2CI2 and petroleum ether to give the product 15a in 79% isolated yield. The diastereoselectiv-ity was the same as in the acyclic case giving an excellent ratio of exo-15a and endo-15a of >95 <5, and exo-15a was obtained with up to 82% ee. [Pg.222]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

Direct treatment of TIPS enol ethers of a variety of cyclic and acyclic ketones with the strong-base combination of n-BuLi/KO-t-Bu leads to /3-ketosilanes (2) after aqueous work-up. In contrast with the earlier method, this rearrangement appears to proceed through allylic, rather than vinylic, metallation, since enol ethers lacking an allylic a-proton are unreactive. [Pg.133]

Some remarks concerning the scope of the cobalt chelate catalysts 207 seem appropriate. Terminal double bonds in conjugation with vinyl, aryl and alkoxy-carbonyl groups are cyclopropanated selectively. No such reaction occurs with alkyl-substituted and cyclic olefins, cyclic and sterically hindered acyclic 1,3-dienes, vinyl ethers, allenes and phenylacetylene95). The cyclopropanation of electron-poor alkenes such as acrylonitrile and ethyl acrylate (optical yield in the presence of 207a r 33%) with ethyl diazoacetate deserve notice, as these components usually... [Pg.165]

The reaction of acyclic ADC compounds with monoenes has already been discussed in Sections III,B and IV,B. In certain cases the major reaction pathway involves addition of the ADC compound as a 47r component, to the monoene to give 1,3,4-oxadiazines (Scheme 1). 1,3,4-Oxadiazines are the major or sole products from the reactions of ADC compounds with indene,80 and 4-nitrophenyl vinyl ether,90 and from the reaction of azodibenzoyl with enamines and enol ethers.91 93 Norbornadiene also gives a 1,3,4-oxadiazine (42) with ADC compounds.82 However, benzonorbornadiene behaves differently, and the major product from the reaction with PTAD has the structure 119.205 Other bicyclic monoenes react similarly.206 1,3,4-... [Pg.38]

Triplet photoaddition of simple non-cyclic monoolefins is unknown. The sensitized dimerization of ethyl vinyl ether gives exclusively head-to-head adducts, Eq. 21, and probably should not be classed as an example of simple acyclic olefin. Usually the triplets have high energies and are severly twisted. 55> Some cyclic rigid molecules, Eq. 20, that do dimerize 63> do not incorporate substituents that allow regioselectivity to be determined. Butadiene gives principally head-to-head dimerization, Eq. 19, concordant with the PMO prediction, and so does indene, Eq. 22. The anti dimer that is formed would not be expected from a singlet excimer reaction. [Pg.167]

The 1,3-dipolar cycloaddition of nitrones to vinyl ethers is accelerated by Ti(IV) species. The efficiency of the catalyst depends on its complexation capacity. The use of Ti( PrO)2Cl2 favors the formation of trans cycloadducts, presumably, via an endo bidentate complex, in which the metal atom is simultaneously coordinated to the vinyl ether and to the cyclic nitrone or to the Z-isomer of the acyclic nitrones (800a). Highly diastereo- and enantioselective 1,3-dipolar cycloaddition reactions of nitrones with alkenes, catalyzed by chiral polybi-naphtyl Lewis acids, have been developed. Isoxazolidines with up to 99% ee were obtained. The chiral polymer ligand influences the stereoselectivity to the same extent as its monomeric version, but has the advantage of easy recovery and reuse (800b). [Pg.358]

The hydrogenation is usually limited to nonpolar alkenes (terminal and internal cyclic and acyclic alkenes), even though Ti systems have been used to hydrogenate alkenes containing ether and ester functionalities such as vinyl ethers or methyl oleate [42, 45, 59, 62]. [Pg.115]

The reaction < —40 °C of svw-vinyl substituted acyclic (/p-allyljlVKCOjjCp complexes 57 (M = Mo, W Cp = Cp, Cp ) with CF3CO2H or a mixture of BF3 and an aldehyde generates the s-trans (diene)M(CO)2Cp/ cations 58a or 58b respectively, which may be isolated by precipitation from ether (Scheme 15)30,88. At higher temperature... [Pg.911]

A wide range of olefins can be cyclopropanated with acceptor-substituted carbene complexes. These include acyclic or cyclic alkenes, styrenes [1015], 1,3-dienes [1002], vinyl iodides [1347,1348], arenes [1349], fullerenes [1350], heteroare-nes, enol ethers or esters [1351-1354], ketene acetals, and A-alkoxycarbonyl-[1355,1356] or A-silyl enamines [1357], Electron-rich alkenes are usually cyclopropanated faster than electron-poor alkenes [626,1015],... [Pg.218]


See other pages where Ethers acyclic vinyl is mentioned: [Pg.276]    [Pg.867]    [Pg.713]    [Pg.96]    [Pg.229]    [Pg.382]    [Pg.238]    [Pg.1140]    [Pg.1169]    [Pg.156]    [Pg.1140]    [Pg.1169]    [Pg.254]    [Pg.77]    [Pg.15]    [Pg.85]    [Pg.33]    [Pg.41]    [Pg.183]    [Pg.106]    [Pg.131]    [Pg.131]    [Pg.238]   
See also in sourсe #XX -- [ Pg.238 ]




SEARCH



© 2024 chempedia.info