Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,3-dipolar cycloaddition reactions with nitrones

In a more recent work the same research group has applied cyclic and acyclic vinyl ethers in the oxazaborolidinone-catalyzed 1,3-dipolar cycloaddition reaction with nitrones [30]. The reaction between nitrone 5 and 2,3-dihydrofuran 6 with 20 mol% of the phenyl glycine-derived catalyst 3c, gave the product 7 in 56% yield as the sole diastereomer, however, with a low ee of 38% (Scheme 6.9). [Pg.219]

In a more recent study on 1,3-dipolar cycloaddition reactions the use of succi-nimide instead of the oxazolidinone auxiliary was introduced (Scheme 6.19) [58]. The succinimide derivatives 24a,b are more reactive towards the 1,3-dipolar cycloaddition reaction with nitrone la and the reaction proceeds in the absence of a catalyst. In the presence of TiCl2-TADDOLate catalyst 23a (5 mol%) the reaction of la with 24a proceeds at -20 to -10 °C, and after conversion of the unstable succinimide adduct into the amide derivative, the corresponding product 25 was obtained in an endojexo ratio of <5 >95. Additionally, the enantioselectivity of the reaction of 72% ee is also an improvement compared to the analogous reaction of the oxazolidinone derivative 19. Similar improvements were obtained in reactions of other related nitrones with 24a and b. [Pg.227]

Cyclobut[c]thiophene also undergoes 1,3-dipolar cycloaddition reactions with nitrones and nitrile oxides to produce cycloadducts, such as 80, albeit in moderate yields (Scheme 9) <1999J(P1)605>. [Pg.1161]

MacMillan has described a class of readily available, chiral imidazolidi-nones that act as catalysts in a variety of catalytic asymmetric transformations [89]. The chiral imidazolidinone catalyst 103 was noted to be efficient for the activation of simple a, 5-unsaturated aldehydes towards dipolar cycloaddition reactions via the corresponding iminium intermediate 104 (Scheme 18.20) [90]. With crotonaldehyde (102), the [l,3]-dipolar cycloaddition reaction with nitrone 97 furnished the corresponding endo cycloadduct 105 with high stereoselectivity (endolexo=9A (>, 94% ee). The observed stereoselectivity was consistent with preferential formation of the ( )-isomer 104. [Pg.600]

Gothelf presents in Chapter 6 a comprehensive review of metal-catalyzed 1,3-di-polar cycloaddition reactions, with the focus on the properties of different chiral Lewis-acid complexes. The general properties of a chiral aqua complex are presented in the next chapter by Kanamasa, who focuses on 1,3-dipolar cycloaddition reactions of nitrones, nitronates, and diazo compounds. The use of this complex as a highly efficient catalyst for carbo-Diels-Alder reactions and conjugate additions is also described. [Pg.3]

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

In an analogous study by Meske, the impact of various oxazaborolidinone catalysts for the 1,3-dipolar cycloaddition reactions between acyclic nitrones and vinyl ethers was studied [31]. Both the diastereo- and the enantioselectivities obtained in this work were low. The highest enantioselectivity was obtained by the application of 100 mol% of the tert-butyl-substituted oxazaborolidinone catalyst 3d [27, 32] in the 1,3-dipolar cycloaddition reaction between nitrone la and ethyl vinyl ether 8a giving endo-9a and exo-9a in 42% and 27% isolated yield, respectively, with up to 20% ee for endo-9a as the best result (Scheme 6.10). [Pg.219]

Several titanium(IV) complexes are efficient and reliable Lewis acid catalysts and they have been applied to numerous reactions, especially in combination with the so-called TADDOL (a, a,a, a -tetraaryl-l,3-dioxolane-4,5-dimethanol) (22) ligands [53-55]. In the first study on normal electron-demand 1,3-dipolar cycloaddition reactions between nitrones and alkenes, which appeared in 1994, the catalytic reaction of a series of chiral TiCl2-TADDOLates on the reaction of nitrones 1 with al-kenoyloxazolidinones 19 was developed (Scheme 6.18) [56]. These substrates have turned out be the model system of choice for most studies on metal-catalyzed normal electron-demand 1,3-dipolar cycloaddition reactions of nitrones as it will appear from this chapter. When 10 mol% of the catalyst 23a was applied in the reaction depicted in Scheme 6.18 the reaction proceeded to give a yield of up to 94% ee after 20 h. The reaction led primarily to exo-21 and in the best case an endo/ exo ratio of 10 90 was obtained. The chiral information of the catalyst was transferred with a fair efficiency to the substrates as up to 60% ee of one of the isomers of exo3 was obtained [56]. [Pg.226]

The normal electron-demand principle of activation of 1,3-dipolar cycloaddition reactions of nitrones has also been tested for the 1,3-dipolar cycloaddition reaction of alkenes with diazoalkanes [71]. The reaction of ethyl diazoacetate 33 with 19b in the presence of a TiCl2-TADDOLate catalyst 23a afforded the 1,3-dipolar cycloaddition product 34 in good yield and with 30-40% ee (Scheme 6.26). [Pg.231]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

The above described approach was extended to include the 1,3-dipolar cycloaddition reaction of nitrones with allyl alcohol (Scheme 6.35) [78]. The zinc catalyst which is used in a stoichiometric amount is generated from allyl alcohol 45, Et2Zn, (R,J )-diisopropyltartrate (DIPT) and EtZnCl. Addition of the nitrone 52a leads to primarily tmns-53a which is obtained in a moderate yield, however, with high ee of up to 95%. Application of 52b as the nitrone in the reaction leads to higher yields of 53b (47-68%), high trans selectivities and up to 93% ee. Compared to other metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions of... [Pg.236]

The reactions of nitrones constitute the absolute majority of metal-catalyzed asymmetric 1,3-dipolar cycloaddition reactions. Boron, aluminum, titanium, copper and palladium catalysts have been tested for the inverse electron-demand 1,3-dipolar cycloaddition reaction of nitrones with electron-rich alkenes. Fair enantioselectivities of up to 79% ee were obtained with oxazaborolidinone catalysts. However, the AlMe-3,3 -Ar-BINOL complexes proved to be superior for reactions of both acyclic and cyclic nitrones and more than >99% ee was obtained in some reactions. The Cu(OTf)2-BOX catalyst was efficient for reactions of the glyoxylate-derived nitrones with vinyl ethers and enantioselectivities of up to 93% ee were obtained. [Pg.244]

The 1,3-dipolar cycloaddition reaction of nitrones with alkenes gives isoxazolidines is a fundamental reaction in organic chemistry and the available literature on this topic of organic chemistry is vast. In this reaction until three contiguous asymmetric centers can be formed in the isoxazolidine 17 as outlined for the reaction between a nitrone and an 1,2-disubstituted alkene. The relative stereochemistry at C-4 and C-5 is always controlled by the geometric relationship of the substituents on the alkene (Scheme 8.6). [Pg.321]

The Lewis acid-catalyzed 1,3-dipolar cycloaddition reaction of nitrones to a,/ -un-saturated carbonyl compound in the presence of Lewis acids has been investigated by Tanaka et al. [31]. Ab-initio calculations were performed in a model reaction of the simple nitrone 18 reacting with acrolein 1 to give the two cycloadducts 19 and 20 (Scheme 8.7). [Pg.322]

The Lewis acid-catalyzed reaction of nitrone 21 with ethyl vinyl ether 22 (Scheme 8.8) was also investigated for BH3 and AlMe3 coordinated to 21 [32]. The presence of BH3 decreases the activation energy for the formation of 23 by 3.1 and 4.5 kcal mol to 9.6 kcal mol for the exoselective reaction and 11.6 kcal-mol for the endo-selective reaction, respectively, while the activation energy for the formation of 24 increases by >1.4 kcal mol , compared to those for the uncatalyzed reaction. The transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 is shown in Fig. 8.19. [Pg.325]

Fig. 8.19 The calculated transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 [32 ... Fig. 8.19 The calculated transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 [32 ...
The typical 1,3-dipolar cycloaddition reaction of nitrones with alkenes involves a dominant interaction of HOMO (nitrone) and LUMO (alkenes). The inverse-electron demand of the... [Pg.257]

Copper(II)-bisoxazoline also catalyzes asymmetric 1,3-dipolar cycloaddition reactions of nitrones with electron-rich alkenes (Eq. 8.57).90... [Pg.257]

Scheme 60). 1,3-Dipolar cycloaddition reactions of nitrones with olefins are catalyzed by a chiral Ni11 or Pd11 catalyst.283,284... [Pg.426]

Related to the nitrile oxide cycloadditions presented in Scheme 6.206 are 1,3-dipolar cycloaddition reactions of nitrones with alkenes leading to isoxazolidines. The group of Comes-Franchini has described cycloadditions of (Z)-a-phenyl-N-methylnitrone with allylic fluorides leading to enantiopure fluorine-containing isoxazolidines, and ultimately to amino polyols (Scheme 6.207) [374]. The reactions were carried out under solvent-free conditions in the presence of 5 mol% of either scandium(III) or indium(III) triflate. In the racemic series, an optimized 74% yield of an exo/endo mixture of cycloadducts was obtained within 15 min at 100 °C. In the case of the enantiopure allyl fluoride, a similar product distribution was achieved after 25 min at 100 °C. Reduction of the isoxazolidine cycloadducts with lithium aluminum hydride provided fluorinated enantiopure polyols of pharmaceutical interest possessing four stereocenters. [Pg.238]

Highly selective 1,3-dipolar cycloaddition reactions of nitrone (154) with acrylates have been used in the total syntheses of pyrrolizidine alkaloids, 7-deoxy-casuarine (572) and hyacinthacine A2 (573) (Scheme 2.263) (772). [Pg.338]

The 1,3-dipolar cycloaddition of nitrones to vinyl ethers is accelerated by Ti(IV) species. The efficiency of the catalyst depends on its complexation capacity. The use of Ti( PrO)2Cl2 favors the formation of trans cycloadducts, presumably, via an endo bidentate complex, in which the metal atom is simultaneously coordinated to the vinyl ether and to the cyclic nitrone or to the Z-isomer of the acyclic nitrones (800a). Highly diastereo- and enantioselective 1,3-dipolar cycloaddition reactions of nitrones with alkenes, catalyzed by chiral polybi-naphtyl Lewis acids, have been developed. Isoxazolidines with up to 99% ee were obtained. The chiral polymer ligand influences the stereoselectivity to the same extent as its monomeric version, but has the advantage of easy recovery and reuse (800b). [Pg.358]

Attempts to Catalyze [3 + 2]-Cycloaddition of Nitronates to Olefins In Section 3.2.1.2.2.2, it was noted that [4+ 2]-cycloaddition reactions of nitro-alkenes and alkenes proceed much faster in the presence of LA. At the same time, in the presence of LA, nitronates can rapidly decompose (49) or undergo rearrangements (see Section 3.4.2.5.6 ). Hence, it is not surprising that catalysis of 1,3-dipolar cycloaddition reactions of nitronates with alkenes by LA has attracted little attention until very recent times. An exception is the study by the Japanese... [Pg.550]

Main Aspects of Chemistry and Stereochemistry of Cyclic Nitroso Acetals Chemistry of cyclic nitroso acetals or nitrosals (the term was introduced by Prof. Seebach) has attracted interest only after the discovery of the 1,3-dipolar cycloaddition reaction of nitronates with olefins in 1962 by the research group of Prof. Tartakovsky. (Principal data on nitroso acetals up to 1990 were summarized in the review by Rudchenko (395).)... [Pg.570]

Elsewhere, Heaney et al. (313-315) found that alkenyloximes (e.g., 285), may react in a number of ways including formation of cyclic nitrones by the 1,3-APT reaction (Scheme 1.60). The benzodiazepinone nitrones (286) formed by the intramolecular 1,3-APT will undergo an intermolecular dipolar cycloaddition reaction with an external dipolarophile to afford five,seven,six-membered tricyclic adducts (287). Alternatively, the oximes may equilibrate to the corresponding N—H nitrones (288) and undergo intramolecular cycloaddition with the alkenyl function to afford five,six,six-membered tricyclic isoxazolidine adducts (289, R = H see also Section 1.11.2). In the presence of an electron-deficient alkene such as methyl vinyl ketone, the nitrogen of oxime 285 may be alkylated via the acyclic version of the 1,3-APT reaction and thus afford the N-alkylated nitrone 290 and the corresponding adduct 291. In more recent work, they prepared the related pyrimidodiazepine N-oxides by oxime-alkene cyclization for subsequent cycloaddition reactions (316). Related nitrones have been prepared by a number of workers by the more familiar route of condensation with alkylhydroxylamines (Scheme 1.67, Section 1.11.3). [Pg.51]

Scheme 1.64). The Ag(I)-mediated cyclization afforded dipole 306 for 1,3-dipolar cycloaddition with methyl vinyl ketone to yield adducts 307 and the C(2) epimer as a 1 1 mixture (48%). Hydrogenolytic N—O cleavage and simultaneous intramolecular reductive amination of the pendant ketone of the former dipolarophile afforded a mixture of alcohol 308 and the C(6) epimer. Oxidation to a single ketone was followed by carbonyl removal by conversion to the dithiolane and desulfurization with Raney nickel to afford the target compound 305 (299). By this methodology, a seven-membered nitrone (309) was prepared for a dipolar cycloaddition reaction with Al-methyl maleimide or styrene (301). [Pg.54]

Ramamoorthy et al. (444) found that a-phenyl-A-(4-methylphenyl)nitrone can be the guest molecule in inclusion complexes with a p-cyclodextrin host in 1 1 and 1 2 ratios (guest/host), and that the latter undergoes a 1,3-dipolar cycloaddition reaction with electron-deficient alkenes. In more recent work, they have formed 1 1 inclusion complexes of the bowl-shaped p-cyclodextrin 383 with (3-nitrostyrene 381 or 1-nitrocyclohexene 382, which leave the alkene moiety exposed (Fig. 1.9) (445). Complexes 381 and 382 undergo cycloaddition reaction with ot-phenyl-A-(4-methylphenyl)nitrone in the solid state after thorough homogenization (60 °C, 3 h) to give the 4-substituted products exclusively in 80 and 85% yield, respectively. [Pg.67]

With ever more powerful technology becoming available, computer-based molecular modeling of complex chemical reactions is now commonplace. But while the Diels-Alder reaction has received a great deal of theoretical attention, the dipolar cycloaddition reactions of nitrones were until very recently relatively... [Pg.67]

Sneider et al. (27,28) applied a familiar nitrone for the synthesis the immunosuppressant (—)-FR901483 (14) in a recent study (Scheme 12.7). The nitrone 12 is generated in situ from ketone 10 and the optically pure hydroxylamine 11 at 25 °C. The resultant nitrone 12 underwent a 1,3-dipolar cycloaddition reaction with ethyl acrylate in refluxing toluene to give the diastereomer 13 with 71 % diastereomeric excess (de). In 22 synthetic steps including the 1,3-dipolar cycloaddition, the target molecule 14 was obtained. [Pg.823]

Chiral exocyclic alkenes such as 112, also having the chiral center two bonds away from the reacting alkene moiety, have been used in highly diastereoselective reactions with azomethine ylides, and have been used as the key reaction for the asymmetric synthesis of (5)-(—)-cucurbitine (Scheme 12.37) (169). The aryl sulfone 113 was used in a 1,3-dipolar cycloaddition reaction with acyclic nitrones. In 113, the chiral center is located four bonds apart from alkene, and as a result, only moderate diastereoselectivities of 36-56% de were obtained in these reactions (170). [Pg.843]


See other pages where 1,3-dipolar cycloaddition reactions with nitrones is mentioned: [Pg.213]    [Pg.227]    [Pg.228]    [Pg.232]    [Pg.244]    [Pg.285]    [Pg.322]    [Pg.323]    [Pg.150]    [Pg.257]    [Pg.250]    [Pg.380]    [Pg.9]    [Pg.33]    [Pg.60]    [Pg.878]    [Pg.19]    [Pg.43]    [Pg.70]   
See also in sourсe #XX -- [ Pg.267 , Pg.267 ]




SEARCH



1.3- Dipolar cycloaddition nitronates

1.3- Dipolar reactions

Cycloaddition reactions 1,3-dipolar

Cycloaddition with

Cycloadditions 1,3-dipolar reactions

Dipolar cycloadditions with nitrones

Nitronates cycloadditions

Nitrone 1,3-dipolar cycloaddition

Nitrone reactions

Nitrones 1,3-dipolar cycloadditions

Nitrones cycloaddition

Nitrones, cycloaddition reactions

Nitrones, cycloadditions

Nitrones, dipolar cycloaddition

Nitrones, reactions

Reactions with nitrones

© 2024 chempedia.info