Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrones chiral

Other approaches to (36) make use of (37, R = CH ) and reaction with a tributylstannyl allene (60) or 3-siloxypentadiene (61). A chemicoen2ymatic synthesis for both thienamycia (2) and 1 -methyl analogues starts from the chiral monoester (38), derived by enzymatic hydrolysis of the dimethyl ester, and proceeding by way of the P-lactam (39, R = H or CH ) (62,63). (3)-Methyl-3-hydroxy-2-methylpropanoate [80657-57-4] (40), C H qO, has also been used as starting material for (36) (64), whereas 1,3-dipolar cycloaddition of a chiral nitrone with a crotonate ester affords the oxa2ohdine (41) which again can be converted to a suitable P-lactam precursor (65). [Pg.8]

Chiral nitrones react with alkenes to produce 3,5-disubstituted isoxazolidines that are nonracemic diastereomeric mixtures and are oriented predominantly cis (equation 53) (77CC303, 79JOC1212). [Pg.109]

Another route to A-benzoyl-L-daunosamine is the 1,3-addition of silyl ketene acetal 4 to the chiral nitrone 5, accompanied by a silyl group transfer in acetonitrile under mild conditions. This reaction provides high stereoselectivity in favor of the tw -product 621. [Pg.764]

Mosher and coworkers have adopted this strategy for the enantioselective synthesis of 2,3-dideoxy-3-nitro-furanosides and pyranosides using chiral nitronate dianions, as shown in Eq. 5.5.11... [Pg.127]

Various kinds of chiral acyclic nitrones have been devised, and they have been used extensively in 1,3-dipolar cycloaddition reactions, which are documented in recent reviews.63 Typical chiral acyclic nitrones that have been used in asymmetric cycloadditions are illustrated in Scheme 8.15. Several recent applications of these chiral nitrones to organic synthesis are presented here. For example, the addition of the sodium enolate of methyl acetate to IV-benzyl nitrone derived from D-glyceraldehyde affords the 3-substituted isoxazolin-5-one with a high syn selectivity. Further elaboration leads to the preparation of the isoxazolidine nucleoside analog in enantiomerically pure form (Eq. 8.52).78... [Pg.254]

Enantioselective total synthesis of antifungal agent Sch-38516 is reported. Stereocontrolled carbohydrate synthesis is based on the 1,3-dipolar cycloaddition of chiral nitrone to vinylene carbonate, as shown in Eq. 8.53.79... [Pg.254]

Intramolecular cycloadditions of chiral nitrones provide a useful tool for the preparation of bioactive heterocyclic compounds.63 Shing et al. demonstrated that 1,3-dipolar cycloaddition of nitrones derived from 3-0-allyl-hexoses is dependent only on the relative configuration at C-2,3, as shown in Scheme 8.16. Thus 3-0-allyl-D-glucose and -D-altrose (both with threo-configuration at C-2,3) produce oxepanes selectively, whereas 3-O-allyl-D-allose and -D-man-nose (both with erythro-configuration at C-2,3) give tetrahydropyranes selectively.80... [Pg.255]

An optically active cyclic nitrone in 1,3-dipolar cycloaddition was first reported by Vasella in 1985. 81A variety of optically active cyclic nitrones have been devised since then. Some typical chiral nitrones described in Ref. 63c are shown in Scheme 8.17. Applications of these nitrones are also presented in this review. [Pg.255]

Nitrone 1,3-DC reactions are still the most general approach to isoxazolidines. The stereocontrol is usually achieved by the use of chiral nitrones and/or dipolarophiles, but new interesting achievements on Lewis acid catalyzed cycloadditions are also frequently reported. Tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanatedionate) europium(III) [Eu(fod)3] selectively activated the Z-isomer of C-alkoxycarbonyl nitrone 75 existing as an E,Z-equilibrium mixture by forming the (Z)-75-Eu(fod)3 complex. (Z)-75-Eu(fod)3 reacted with electron-rich dipolarophiles such as vinyl ethers to give the trans-adducts with excellent diastereoselectivity <06T12227>. [Pg.296]

Similarly, chiral nitrones (61a—c) and (62a—c) were obtained from the corresponding a-amino aldehydes (209, 210), nitrones (63a,b) from p-amino-a-hydroxy aldehydes (211), and chiral nitrones (64) and (65) from IV-fluorenyl-methoxycarbonyl (/V-Fmoc) amino acids and /V-Fmoc-dipeptides (Fig. 2.6) (212). [Pg.155]

To generate chiral nitrones (81) and (82) the direct transformation of chiral o -substituted cyanohydrins was used. Both of the approaches described in Reference 227 allow the production of nitrones in high yields and high optical purity in a one-pot synthesis (Schemes 2.28 and 2.29). [Pg.157]

I. Addition of C-Radicals to Nitrones Recently (525), the addition of alkyl radicals to chiral nitrones as a new method of asymmetrical synthesis of a-amino acids has been described. Addition of ethyl radicals to glycosyl nitrone (286) using Et3B as a source of ethyl radicals appears to proceed with a high stereo-control rate. [Pg.222]

Addition of various organometalic reagents to chiral nitrones, derived from L-erythrulose, proceeds with variable diastereoselectivity, depending on Lewis acids as additives. ZnBr2 facilitates the attack at the Si face of the C=N bond, whereas Et2AlCl makes the attack at the Re face more preferable. The obtained adducts can be transformed into derivatives of /V - h y d r o x y - u. u - d i s u b s t i t u t e d -a-amino acids, with their further conversion into a,a-disubstituted a-amino acids (193, 202). [Pg.245]

Recently, semiempirical PM3 computational analysis (568) and first ab initio study (569) of the nucleophilic addition to chiral nitrones of Grignard reagents have been carried out. The data revealed that all reactions are exothermic and proceed through /w-complexation of nitrones with the organometalic reagent. [Pg.245]

Addition of Heterocyclic Compounds Stereocontrolled nucleophilic addition of heterocyclic compounds to chiral nitrones is of great synthetic importance in the synthesis of natural and biologically active compounds. In these reactions, the nitrone group serves as an amino group precursor and the heterocycle furnishes the formyl group (from thiazole) (192, 195, 214, 215, 579) or the carboxyl group (fromfuran) (194-196, 580-584) (Scheme 2.149). [Pg.252]

Transformation of chiral nitrones into enantiomer enriched a-chiral N -hydroxylamines and their derivatives, has been successfully employed in the enantioselective synthesis of (+ )-(R)- and (—)-(S)-zileuton (216). An expeditious synthesis of thymine polyoxin C (347), based on the stereocontrolled addition of 2-lithiofuran (a masked carboxylate group) to the A-benzyl nitrone derived from methyl 2,3-O-isopropylidene-dialdo-D-ribofuranoside, is described (Scheme 2.151) (194). [Pg.253]

Nucleophilic addition of furan to nitrone occurs upon treatment with trimethyl-silyl triflate (TMSOTf) (586, 587). Catalyzed TMSOTf stereoselective addition of 2-[(trimethylsilyl)oxy]furan to chiral nitrones was carried out in a short synthesis of [IS (la, 2[), 7f>, 8a, 8aa)]-l,2-di(t-butyldiphenylsilyloxy)-indolizidine-7,8-diol (588). Addition to N -gulosyl-C-alkoxymethyl nitrones led to the synthesis of the core intermediate of polyoxin C (218). [Pg.257]

Addition of lithium derivatives of acetylenides (Li—C=C-C02R) to chiral nitrones proceeds with high stereoselectivity, giving a-acetylene substituted hydroxylamines (410a,b) (656). This reaction has been successfully applied to the synthesis of y-hydroxyamino-a, 3-ethylene substituted acids (411a,b), formed in the reduction of (410) with Zn in the presence of acid (657, 658), and to chiral 5-substituted-3-pyrroline-2-ones (412a,b) (Scheme 2.184) (658). [Pg.280]

The reaction of nitrones with terminal alkynes proceeds in excellent yields and high purity, in the presence of stoichiometric quantities of diethylzinc and zinc triflate (219, 661-663). To optimize the process of diastereoselective addition of terminal alkynes to chiral nitrones, ZnCl2 and NEt3 in toluene were used. This reaction protocol is facile to perform, cost-effective and environmental friendly (664). [Pg.283]

Reactions of Allylation and Propargylation Allylation of prochiral and chiral nitrones (292) with allylmagnesium chloride leads to homoallylic hydroxylamines (416), which via an iodo cyclization step are converted to 5-(iodomethyl)isoxazolidines (417) (Scheme 2.186) (202, 213, 666-668). [Pg.283]

Chiral nitrones derived from L-valine (62a-c) react with methyl acrylate to afford the corresponding diastereomeric 3,5-disubstituted isoxazolidines (565a-c) to (568a-c). The dibenzyl substituted nitrone (62a) also gave 3,4-disubstituted isoxazolidine (569) in 4% yield. The stereoselectivity was dependent on the steric hindrance of the nitrone and on reaction conditions. High pressure decreased the reaction time of the cycloadditions. The major products were found to have the C-3/C-6 erythro and C-3/C-5 Irons configuration (Scheme 2.262) (771). [Pg.338]

Mukai et al.85 reported an asymmetric 1,3-dipolar cycloaddition of chromium(0)-complexed benzaldehyde derivatives. As shown in Scheme 5 52, heating chiral nitrone 171a, derived from Cr(CO)3-complexed benzaldehyde, with electron-rich olefins such as styrene (173a) or ethyl vinyl ether (173b) generates the corresponding chiral a.v-3,5-disubstitutcd isoxazolidine adduct 174 or... [Pg.308]

A diastereoselective dipolar cycloaddition of chiral nitrone 80 with alkene dipolarophiles afforded imidazo[ 1,2-3]-isoaxazole (Scheme 9). The conversion via N-O reduction of this ring system with Raney-Ni in methanol gave the corresponding pyrrolo[l,2-A imidazole in 66% yield. The structure has been confirmed by X-ray diffraction crystal stmcture analysis <2000SL967>. [Pg.53]

The substrate-controlled diastereoselective addition of lithiated alkoxyallenes to chiral nitrones such as 123, 125 and 126 (Scheme 8.32) furnish allenylhydroxyl-amines as unstable products, which immediately cydize to give enantiopure mono-orbicyclic 1,2-oxazines (Eqs 8.25 and 8.26) [72, 76]. Starting with (R)-glyceraldehyde-derived nitrone 123, cydization products 124 were formed with excellent syn selectivity in tetrahydrofuran as solvent, whereas precomplexation of nitrone 123 with... [Pg.445]

Chiacchio et al. (43,44) investigated the synthesis of isoxazolidinylthymines by the use of various C-functionalized chiral nitrones in order to enforce enantioselec-tion in their cycloaddition reactions with vinyl acetate (Scheme 1.3). They found, as in the work of Merino et al. (40), that asymmetric induction is at best partial with dipoles whose chiral auxiliary does not maintain a fixed geometry and so cannot completely direct the addition to the nitrone. After poor results with menthol ester-and methyl lactate-based nitrones, they were able to prepare and separate isoxazo-lidine 8a and its diastereomer 8b in near quantitative yield using the A-glycosyl... [Pg.4]

The continued importance of 3-lactam ring systems in medicine has encouraged a number of research groups to investigate their synthesis via a nitrone cycloaddition protocol. Kametani et al. (60-62) reported the preparation of advanced intermediates of penems and carbapenems including (+)-thienamycin (29) and its enantiomer (Scheme 1.7). They prepared the chiral nitrone 30 from (—)-menthyl... [Pg.8]

This chapter is divided into four major sections. The first (Section 2.1) will deal with the structure of both alkoxy and silyl nitronates. Specifically, this section will include physical, structural, and spectroscopic properties of nitronates. The next section (Section 2.2) describes the mechanistic aspects of the dipolar cycloaddition including both experimental and theoretical investigations. Also discussed in this section are the regio- and stereochemical features of the process. Finally, the remaining sections will cover the preparation, reaction, and subsequent functionalization of silyl nitronates (Section 2.3) and alkyl nitronates (Section 2.4), respectively. This will include discussion of facial selectivity in the case of chiral nitronates and the application of this process to combinatorial and natural product synthesis. [Pg.86]

The majority of asymmetric dipolar cycloadditions have been investigated in the context of the tandem [4 + 2]/[3 + 2]-nitroalkene cycloaddition. The chiral nitronate is prepared by using either a chiral nitroalkene, vinyl ether, or Lewis acid in the hrst cycloaddition. The acetal center at C(6) of the nitronate provides important steric and electronic effects that control the subsequent dipolar cycloaddition. Subsequently, in the cycloadditions of the chiral nitroalkenes 281 and 284, the dipolarophile approaches from the side distal to that of the substituent at C(4) and the acetal center at C(6) (Eq. 2.27 and Table 2.53) (90,215). [Pg.146]

The tandem transesterification/[3 + 2]-cycloaddition methodology is be a powerful synthetic tool, since it guarantees high diastereoselectivity even under thermal conditions. It has been successfully apphed to synthetic work of the N-terminal amino acid component of Nikkomycin Bz (Scheme 11.53) (173). Thus, the sugar-based oxime is condensed with a glyoxylate hemiacetal to produce a chiral nitrone ester, which is then reacted with ( )-p-niethoxycinnamyl alcohol in the presence of a catalytic amount of TiCU at 100 °C. After the intramolecular cycloaddition, the... [Pg.802]

Achiral ester-substituted nitrones as well as chiral nitrones can be employed in diastereoselective asymmetric versions of tandem transesterification/[3 + 21-cycloaddition reactions, as shown in Scheme 11.54 (174). High diastereoselectivity and excellent chemical yields have been observed in the reaction with a (Z)-allylic alcohol having a chiral center at the a-position in the presence of a catalytic amount of TiCl4- On the other hand, the reaction with an ( )-allylic alcohol having a chiral center at the a-position, under similar conditions, affords very low selectivities. Tamura et al. has solved this problem with a double chiral induction method. Thus, high diastereoselectivity has been attained by use of a chiral nitrone. [Pg.803]


See other pages where Nitrones chiral is mentioned: [Pg.254]    [Pg.255]    [Pg.210]    [Pg.115]    [Pg.123]    [Pg.221]    [Pg.271]    [Pg.278]    [Pg.283]    [Pg.301]    [Pg.363]    [Pg.171]    [Pg.47]    [Pg.151]    [Pg.357]    [Pg.20]    [Pg.34]   
See also in sourсe #XX -- [ Pg.254 ]

See also in sourсe #XX -- [ Pg.115 ]




SEARCH



1.3- Dipolar cycloaddition of chiral nitrones

Chiral auxiliaries nitron addition

Chiral nitrones 1,3-dipolar cycloaddition

Cyclic nitronates nitronate chiral dipoles

Cycloaddition chiral nitrones

Dipolar Cycloaddition of Chiral N-(Alkoxyalkyl) Nitrones

Nitronates chiral auxiliaries

Nitronates diastereoselectivity, chiral dipoles

Nitrones acyclic chiral

Nitrones chiral auxiliaries

Nitrones diastereoselectivity, chiral dipoles

Reactions of Chiral Nitrones

© 2024 chempedia.info