Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cupric procedure

The hberated iodine, as the complex triiodide ion, may be titrated with standard thiosulfate solution. A general iodometric assay method for organic peroxides has been pubUshed (253). Some peroxyesters may be determined by ferric ion-catalyzed iodometric analysis or by cupric ion catalysis. The latter has become an ASTM Standard procedure (254). Other reducing agents are ferrous, titanous, chromous, staimous, and arsenite ions triphenylphosphine diphenyl sulfide and triphenjiarsine (255,256). [Pg.132]

In a similar procedure, the atomizer test, which depends on the behavior of an advancing rather than a receding contact angle, a fine mist of water is apphed to the metal surface and the spreading of water is observed. On a clean surface, water spreads to a uniform film. With oleic acid as the test soil, the atomizer test can detect the presence of 10 mg of soil per cm, less than a monomolecular layer (115). For steel that is to be electroplated, the copper dip test is often employed. Steel is dipped into a cupric salt solution and the eveimess of the resulting metallic copper deposit is noted. [Pg.537]

A solution of bismuth trioxide in hot glacial acetic acid provides a specific method for the oxidation of acyloins. " The reaction rate is dependent on the steric accessibility of the ketol system. A 2,3-ketol requires less than one hour for completion but an 11,12-ketol is not yet fully oxidized in thirty hours." The reaction is highly selective as a-keto acids, hydrazines and phenols are not oxidized. In a direct comparison with cupric acetate, this procedure is somewhat superior for the preparation of a 2,3-diketone from a 2-keto-3-hydroxy steroid. ... [Pg.250]

A combination of the preceding type of synthesis and of cyclization of 4-amino-5-arylazopyrimidine can be seen in the novel procedure of Richter and Taylor. Proceeding from phenylazomalonamide-amidine hydrochloride (180), they actually close both rings in this synthesis. The pyrimidine ring (183) is closed by formamide, the triazole (181) one by oxidative cyclization in the presence of cupric sulfate. Both possible sequences of cyclization were used. The synthetic possibilities of this procedure follow from the combination of the two parts. The synthesis was used for 7-substituted 2-phenyl-l,2,3-triazolo[4,5-d]-pyrimidines (184, 185). An analogous procedure was employed to prepare the 7-amino derivatives (188) from phenylazomalondiamidine (186). [Pg.246]

It is thought that the chlorination proceeds through a ir-com-plex between cupric chloride and anthracene, and that this complex then undergoes homolytic dissociation. Hence aromatic rings subject to attack by chlorine atoms can be chlorinated in this way. Thus one can convert pyrene to 1-chloropyrene (90% yield), but phenanthrene is not chlorinated. Analogous procedures using cupric bromide lead to 9-bromoanthracene (99% yield) and 1-bromopyrene (94% yield).7... [Pg.16]

Recently, the required heteroaromatic organozinc halides for the Negishi reaction have also been prepared using microwave irradiation [23]. Suna reported that a Zn - Cu couple (activated Zn), prepared using a slightly modified LeGoff procedure from Zn dust and cupric acetate monohydrate, allowed the smooth preparation of (3-pyridinyl)zinc iodide and (2-thienyl)zinc iodide... [Pg.158]

Another preparatively useful procedure for monohalogenation of ketones involves reaction with cupric chloride or cupric bromide.121... [Pg.330]

Thallium(III), particularly as the trifluoroacetate salt, is also a reactive electrophilic metallating species, and a variety of synthetic schemes based on arylthallium intermediates have been devised.75 Arylthallium compounds are converted to chlorides or bromides by reaction with the appropriate cupric halide.76 Reaction with potassium iodide gives aryl iodides.77 Fluorides are prepared by successive treatment with potassium fluoride and boron trifluoride.78 Procedures for converting arylthallium compounds to nitriles and phenols have also been described.79... [Pg.1026]

Ferric ion was immobilized on a Chelating Sepharose Fast Flow column preparatory to the separation of seven enkephalin-related phosphopep-tides.17 Non-phosphorylated peptides flowed through the column, and the bound fraction contained the product. The capacity of the column was found to be 23 pmol/mL by frontal elution analysis. Cupric ion was immobilized on Chelating Superose for the isolation of bovine serum albumin.18 Cupric ion was immobilized on a Pharmacia HiTrap column for the separation of Protein C from prothrombin, a separation that was used to model the subsequent apparently successful separation of Factor IX from prothrombin Factor IX activity of the eluate was, however, not checked.19 Imidazole was used as the displacement agent to recover p-galactosidase from unclarified homogenates injected onto a nickel-loaded IMAC column.20 Pretreatment with nucleases and cleaning in place between injections were required procedures. A sixfold purification factor was observed. [Pg.132]

Ion-selective electrodes have been used for the potentiometric determination of the total cupric ion content of seawater [284], Down to 2 xg/l cupric copper could be determined by this procedure. [Pg.172]

In REACT, we prepare the calculation by disenabling the redox couple between trivalent and pentavalent arsenic (arsenite and arsenate, respectively). As well, we disenable the couples for ferric iron and cupric copper, since we will not consider either ferrous or cupric species. We load dataset FeOH+.dat , which contains the reactions from the Dzombak and Morel (1990) surface complexation model, including those for which binding constants have only been estimated. The procedure is... [Pg.457]

B. Phenylglyoxal. The phenylglyoxal hemimercaptal prepared as described in procedure A (69-74 g.) is dissolved in 400 ml. of warm chloroform, and 60 g. (0.30 mole) of powdered cupric acetate monohydrate is added in one portion to the well-stirred solution. The mixture is stirred at room temperature for 1 hour the solids are removed by suction filtration and washed with two 75-ml. portions of chloroform. The combined chloroform filtrate and washings are shaken in a separatory funnel with 75 ml. of water 20 g. of powdered sodium carbonate is added in small portions to the funnel, and the chloroform solution is shaken with the neutralized aqueous solution. (Cautionl Carbon dioxide is evolved.) The aqueous layer is separated and extracted with four 30-ml. portions of chloroform. The chloroform solutions are combined and dried with anhydrous magnesium sulfate, and the chloroform is removed under reduced pressure. The residue is fractionally distilled under reduced pressure to yield 43-49 g. (64-73%, based on ethyl benzoate) of anhydrous phenylglyoxal as a yellow liquid, b.p. 63-65° (0.5 mm.). [Pg.56]

Iodometry is an indirect procedure based on the aforesaid reversible reaction whereby the assay of oxidizing agents, for instance available chlorine in bleaching powder, cupric and ferric salts may be carried out by reducing them with an excess potassium iodide thereby liberating an equivalent quantity of iodine which can be estimated using a standard solution of thiosulphate. [Pg.137]

Commercially available crystalline cupric acetate monohydrate was used. A large excess of cupric acetate does not improve the yield. Small catalytic amounts can be used if the cupric salt is continually regenerated by passage of oxygen through the reaction mixture, but the procedure is much slower. [Pg.21]

The cupric acetate-pyridine reagent provides a homogenous and basic reaction medium. The yields are high, and there is seldom precipitation of the cuprous derivative which may slow down the cuprous chloride-oxygen procedure. ... [Pg.22]

The solution is stirred slowly and ca. 25 ml. of 2N cupric chloride solution is added slowly. The blue-green color of the cupric chloride is rapidly discharged and a brick red coloration occurs, followed by the precipitation of voluminous bright red crystals of the cuprous chelate of 2,3-diazabicyclo[2.2.1]hept-2-ene. The pH is adjusted to 5-6 by the addition of 5N ammonium hydroxide. Addition of 25 ml. of the cupric chloride solution followed by neutralization of the generated hydrochloric acid with 5iV ammonium hydroxide is repeated five times. The precipitate is collected by filtration and the filtrate is again treated with 25-ml. portions of cupric chloride solution and 5N ammonium hydroxide. The procedure is repeated until the filtrate is clear red at pH 3-4 and returns to a cloudy green at pH 6 with no further formation of precipitate (Note 5). [Pg.84]

Akermark et al. reported the palladium(II)-mediated intramolecular oxidative cyclization of diphenylamines 567 to carbazoles 568 (355). Many substituents are tolerated in this oxidative cyclization, which represents the best procedure for the cyclization of the diphenylamines to carbazole derivatives. However, stoichiometric amounts of palladium(II) acetate are required for the cyclization of diphenylamines containing electron-releasing or moderately electron-attracting substituents. For the cyclization of diphenylamines containing electron-attracting substituents an over-stoichiometric amount of palladium(II) acetate is required. Moreover, the cyclization is catalyzed by TFA or methanesulfonic acid (355). We demonstrated that this reaction becomes catalytic with palladium through a reoxidation of palladium(O) to palladium(II) using cupric acetate (10,544—547). Since then, several alternative palladium-catalyzed carbazole constructions have been reported (548-556) (Scheme 5.23). [Pg.206]

As was pointed out in Part A, Section 7.3, under many conditions halogenation is faster than enolization. When this is true, the position of substitution in unsymmetrical ketones is governed by the relative rates of formation of the isomeric enols. In general, mixtures are formed with unsymmetrical ketones. The presence of a halogen substituent decreases the rate of acid-catalyzed enolization and therefore retards the introduction of a second halogen at the same site. Monohalogenation can therefore usually be carried out satisfactorily. A preparatively useful procedure for monohalogenation of ketones involves reaction with cupric chloride or cupric bromide.81 82 83 84 85 86... [Pg.218]

An alternate procedure used in a few specialty applications is the cuprammonium process. This involves stabilization of cellulose in an ammonia solution of cupric oxide. Solubilization occurs by complex formation of cupric ion with ammonia and the hydroxyl groups of cellulose. Regeneration of cellulose, after formation of the desired products, is accomplished by treatment with acid. The main application of the cuprammonium process is for the synthesis of films and hollow fibers for use in artificial kidney dialysis machines. The cuprammonium process yields products with superior permeability and biocompatibility properties compared to the xanthation process. Less than 1% of all regenerated cellulose is produced by the cuprammonium process. [Pg.746]

A variation of this procedure involves the use of a catalytic amount of palladium chloride with cupric chloride as a reoxidant.2 This method, however, generally gives lower yields and less pure products. [Pg.94]

Among the oxidative procedures for preparing azo compounds are oxidation of aromatic amines with activated manganese dioxide oxidation of fluorinated aromatic amines with sodium hypochlorite oxidation of aromatic amines with peracids in the presence of cupric ions oxidation of hindered aliphatic amines with iodine pentafluoride oxidation of both aromatic and aliphatic hydrazine derivatives with a variety of reagents such as hydrogen peroxide, halogens or hypochlorites, mercuric oxide, A-bromosuccinimide, nitric acid, and oxides of nitrogen. [Pg.152]

Stirring the mixture in the air simplifies the workup procedure because cuprous complexes are oxidized to cupric compounds that are highly soluble in water or the aqueous ammonia workup medium of this experiment. [Pg.5]

Application 2.—The second plan of procedure is well illustrated in the preparation of cupric chloride, which is very soluble in water. The cheapest salt of copper is the sulfate, and this may be brought into double... [Pg.36]

Even the comparatively unreactive phenoxazine and phenothiazine systems undergo halogenation and nitration with ease and it is normal to prepare monosubstituted derivatives by stepwise procedures rather than by direct electrophilic attack. Indeed, the nitration of phenoxazine is uncontrollable and even N-acylphenoxazines afford a mixture of di- and tetra-nitro products (03CB475). Similarly phenothiazine and nitric acid produce a complex mixture of nitrated sulfoxides and sulfones. Chlorine in DMSO at 40 °C reacts with phenothiazine to yield 3,7-dichlorophenothiazine, whereas cupric chloride gives the 1,7-isomer (76JPR353). Direct bromination of phenoxazine produces a mixture of 3-bromo- and 3,7-dibromo-phenoxazines, while thionyl chloride affords the 1,3,7,9-tetrachloro derivative (60ZOB1893). [Pg.1012]

Copper Oxides, Analytical Procedures.Cupric Oxide intended for use in (JS Military pyrotechnic compns is required to have moisture not over 0.2, CuO not less than 95 0 and acid insolubles not over 0.5%. The granulation shall be such that not less than 95% passes thru a No 200 US Std Sieve... [Pg.307]


See other pages where Cupric procedure is mentioned: [Pg.65]    [Pg.476]    [Pg.52]    [Pg.179]    [Pg.1095]    [Pg.182]    [Pg.79]    [Pg.596]    [Pg.1]    [Pg.187]    [Pg.68]    [Pg.147]    [Pg.9]    [Pg.148]    [Pg.211]    [Pg.238]    [Pg.52]    [Pg.304]    [Pg.9]    [Pg.159]    [Pg.159]    [Pg.222]    [Pg.673]    [Pg.299]   
See also in sourсe #XX -- [ Pg.308 ]




SEARCH



Cupric

© 2024 chempedia.info