Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal Anodization

The electrochemical etching, with the intent of making the etched semiconductor porous, is performed in the anodic regime, so that positive charge is collected at the semiconductor-electrolyte interface. In order to increase the speed of the anodization process, electrical bias is applied to the sample through ohmic contacts. To protect the ohmic contacts on the [Pg.2]


Similar results of photoelectrolysis of water in cells with n-type SrTi03 single-crystal anode and platinized Pt cathode were reported around the same time in a preliminary communication by Mavroides et al. [53] who measured the maximum quantum efficiency... [Pg.247]

Under diffusion-controlled dissolution conditions (in the anodic direction) the crystal orientation has no influence on the reaction rate as only the mass transport conditions in the solution detennine the process. In other words, the material is removed unifonnly and electropolishing of the surface takes place. [Pg.2722]

The best known oxoanion of iron is the ferrate(VI) prepared by oxidizing a suspension of hydrous iron(III) oxide in concentrated alkah with potassium hypochlorite or by anodic oxidation of iron in concentrated alkah. Crystals of potassium ferrate [13718-66-6], K FeO, are deep purple, orthorhombic, and contain discrete tetrahedral [FeOJ anions. Barium ferrate [13773-23A] can be precipitated from solutions of soluble ferrate salts. [Pg.437]

Lead Telluride. Lead teUuride [1314-91 -6] PbTe, forms white cubic crystals, mol wt 334.79, sp gr 8.16, and has a hardness of 3 on the Mohs scale. It is very slightly soluble in water, melts at 917°C, and is prepared by melting lead and tellurium together. Lead teUuride has semiconductive and photoconductive properties. It is used in pyrometry, in heat-sensing instmments such as bolometers and infrared spectroscopes (see Infrared technology AND RAMAN SPECTROSCOPY), and in thermoelectric elements to convert heat directly to electricity (33,34,83). Lead teUuride is also used in catalysts for oxygen reduction in fuel ceUs (qv) (84), as cathodes in primary batteries with lithium anodes (85), in electrical contacts for vacuum switches (86), in lead-ion selective electrodes (87), in tunable lasers (qv) (88), and in thermistors (89). [Pg.69]

Germany, Bitterfeld 1920 two-stage rotary kilns heated internally using intermediate grinding of roast oxidation completed within 3—4 h cylindrical monopolar ceUs, 4 m volume undivided con-centric Ni anodes, rod-shaped Fe cathodes unfiltered electrolyte batch operation KMnO crystallizes in ceU electrolysis energy consumption about 700 kWh/1 4,000 27,113... [Pg.519]

United States, LaSalle, IH. 1918 continuous Hquid-phase oxidation (since ca 1961) K MnO separation from Hquid phase is without prior dilution continuous electrolysis of filtered electrolyte in bipolar ceUs Monel anodes, mild steel cathodes, vacuum crystallization 14,000 ... [Pg.519]

The matte can be treated in different ways, depending on the copper content and on the desired product. In some cases, the copper content of the Bessemer matte is low enough to allow the material to be cast directly into sulfide anodes for electrolytic refining. Usually it is necessary first to separate the nickel and copper sulfides. The copper—nickel matte is cooled slowly for ca 4 d to faciUtate grain growth of mineral crystals of copper sulfide, nickel—sulfide, and a nickel—copper alloy. This matte is pulverized, the nickel and copper sulfides isolated by flotation, and the alloy extracted magnetically and refined electrolyticaHy. The nickel sulfide is cast into anodes for electrolysis or, more commonly, is roasted to nickel oxide and further reduced to metal for refining by electrolysis or by the carbonyl method. Alternatively, the nickel sulfide may be roasted to provide a nickel oxide sinter that is suitable for direct use by the steel industry. [Pg.3]

Nickel acetate tetrahydrate [6018-89-9] Ni(C2H202) 4H2O, is a green powder which has an acetic acid odor, density 1.74 g/cm. When heated, it loses its water of crystallization and then decomposes to form nickel oxide. Nickel acetate is used as a catalyst intermediate, as an intermediate in the formation of other nickel compounds, as a dye mordant, as a sealer for anodized aluminum, and in nickel electroplating (59). [Pg.13]

Fluorine. This appHcation uses carbon plates as the anode in a fluorine salt solution. Since the ordered crystal stmcture of graphite results in short life, carbon is the preferred anode material (see Fluorine). [Pg.521]

Copper-plating bath compositions of various types have been used. A typical bath formulation consists of 200 g copper sulfate crystals, 30 mL cone, sulfuric acid, 2 mL phenylsulfonic acid, and 1000 mL distUled water. A pure copper anode may be used a copper anode containing a trace of phosphoms reduces sludge accumulation in the plating bath. [Pg.487]

The reaction mixture is filtered. The soHds containing K MnO are leached, filtered, and the filtrate composition adjusted for electrolysis. The soHds are gangue. The Cams Chemical Co. electrolyzes a solution containing 120—150 g/L KOH and 50—60 g/L K MnO. The cells are bipolar (68). The anode side is monel and the cathode mild steel. The cathode consists of small protmsions from the bipolar unit. The base of the cathode is coated with a corrosion-resistant plastic such that the ratio of active cathode area to anode area is about 1 to 140. Cells operate at 1.2—1.4 kA. Anode and cathode current densities are about 85—100 A/m and 13—15 kA/m, respectively. The small cathode areas and large anode areas are used to minimize the reduction of permanganate at the cathode (69). Potassium permanganate is continuously crystallized from cell Hquors. The caustic mother Hquors are evaporated and returned to the cell feed preparation system. [Pg.78]

For water, organic and water-organic metal salts mixtures the dependence of integral and spectral intensities of coherent and non-coherent scattered radiation on the atomic number (Z), density, oscillator layer thickness, chemical composition, and the conditions of the registering of analytical signals (voltage and tube current, tube anode material, crystal-analyzer) was investigated. The dependence obtained was compared to that for the solid probes (metals, alloys, pressed powder probes). [Pg.444]

Magnesium anodes usually consist of alloys with additions of Al, Zn and Mn. The content of Ni, Fe and Cu must be kept very low because they favor selfcorrosion. Ni contents of >0.001% impair properties and should not be exceeded. The influence of Cu is not clear. Cu certainly increases self-corrosion but amounts up to 0.05% are not detrimental if the Mn content is over 0.3%. Amounts of Fe up to about 0.01% do not influence self-corrosion if the Mn content is above 0.3%. With additions of Mn, Fe is precipitated from the melt which on solidification is rendered harmless by the formation of Fe crystals with a coating of manganese. The addition of zinc renders the corrosive attack uniform. In addition, the sensitivity to other impurities is depressed. The most important magnesium alloy for galvanic anodes is AZ63, which corresponds to the claims in Ref. 22. Alloys AZ31 and M2 are still used. The most important properties of these alloys are... [Pg.191]

In strong sunlight, water can evaporate at defects in coatings and surface films, and lead to concentration and crystallization of salts (e.g., in the upper decks of the ship). This can damage surface films, giving rise to local anodes. This is the case when a ship slowly rises in the water on unloading and is later reimmersed on loading. [Pg.394]

A very narrow window produces monochromatic radiation that is still several orders of magnitude more intense than the beam from conventional rotating anode x-ray sources. Sucb beams allow crystallographers to record diffraction patterns from very small crystals of the order of 50 micrometers or smaller. In addition, the diffraction pattern extends to higher resolution and consequently more accurate structural details are obtained as described later in this chapter. The availability and use of such beams have increased enormously in recent years and have greatly facilitated the x-ray determination of protein structures. [Pg.376]

Firstly, they might be expected to have an effect when corrosion occurs under conditions of active (film-free) anodic dissolution and is not limited by the diffusion of oxygen or some other species in the environment. However, if the rate of active dissolution is controlled by the rate of oxygen diffusion, or if, in general terms, the rate-controlling process does not take place at the metal surface, the effect of crystal defects might be expected to be minimal. [Pg.36]

In uniform corrosion the superficial or geometrical area of the metal is used to evaluate both the anodic and cathodic current density, although it might appear to be more logical to take half of that area. However, surfaces are seldom smooth and the true surface area may be twice to three times that of the geometrical area (a cleaved crystal face or an electropolished single crystal would have a true surface area that approximates to its superficial area). It follows, therefore, that the true current density is smaller than the superficial current density, but whether the area used for calculating /, and... [Pg.82]

Figure 1.53 shows diagrammatically various types of pits that can range from hemispherical with a polished surface, in which crystallographic etching has been completely suppressed, to crystallographic pits whose sides are composed of the crystal planes that corrode at the slowest rate. Pits formed on Ni during anodic polarisation in an acetic acid-acetate buffer of pH 4-6 are shown in Fig. 1.54. [Pg.172]

This area will be passivated by the increase in pH due to the cathodically produced OH ions, and partially cathodically protected by the electrons liberated by the anodic processes within the pit. The tubercle thus results in an occluded cell with the consequent acidification of the anodic sites. Wranglen considers that in view of the fact that crystals of FeClj -4H20 are sometimes observed at the bottom of a pit the solution within the pit is a saturated solution of that salt, and that this will correspond with an equilibrium pH of about 3-5. [Pg.183]


See other pages where Crystal Anodization is mentioned: [Pg.2]    [Pg.572]    [Pg.2]    [Pg.572]    [Pg.1378]    [Pg.168]    [Pg.379]    [Pg.515]    [Pg.519]    [Pg.520]    [Pg.120]    [Pg.93]    [Pg.101]    [Pg.544]    [Pg.521]    [Pg.496]    [Pg.377]    [Pg.472]    [Pg.90]    [Pg.185]    [Pg.259]    [Pg.352]    [Pg.220]    [Pg.164]    [Pg.264]    [Pg.431]    [Pg.111]    [Pg.3]    [Pg.1146]    [Pg.194]    [Pg.28]    [Pg.72]   


SEARCH



Alloy single-crystal surface, thin anodic

Alloy single-crystal surface, thin anodic oxide overlayers

Anodic alumina crystal structure

Metal single-crystal surface, thin anodic

Single-crystal surfaces, thin anodic oxide

Single-crystal surfaces, thin anodic oxide overlayers

© 2024 chempedia.info