Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross-linking chemical methods

There are three main cross-linking chemical methods azo, peroxide, and silane cross-linking. There is... [Pg.699]

PVA can be prepared by chemical or physical cross-linking general methods for chemical cross-linking are the use of chemical cross-linkers or the use of electron beams or y-... [Pg.120]

A pulsed plasma has been used to prepare pinhole-free films from relatively nontoxic N vinylpyrrolidone.323 The pulsing reduced fragmentation of the monomer and cross-linking. This method should be tried with other monomers. Plasmas are often used for the modification of polymer surfaces.324 These methods are relatively rapid and use no solvent. Decorative coatings of TiN and other inorganic compounds can be applied to metals and other inorganic substrates by sputtering, chemical vapor deposition, plasmas, and such, as described in Chap. 4.325... [Pg.226]

Snap-freezing of fresh tissue is generally preferred for molecular based studies since this method avoids the use of organic solvents that cause degradation or loss of some cellular components. In particular, frozen sections are used to study enzymes and soluble lipids. Furthermore, this method is used to conduct immunohistochemical analysis since some antigens may be affected by extensive cross-linking chemical fixatives that denature their tertiary structure. [Pg.148]

Protein-Based Adhesives. Proteia-based adhesives are aormaHy used as stmctural adhesives they are all polyamino acids that are derived from blood, fish skin, caseia [9000-71 -9] soybeans, or animal hides, bones, and connective tissue (coUagen). Setting or cross-linking methods typically used are iasolubilization by means of hydrated lime and denaturation. Denaturation methods require energy which can come from heat, pressure, or radiation, as well as chemical denaturants such as carbon disulfide [75-15-0] or thiourea [62-56-6]. Complexiag salts such as those based upon cobalt, copper, or chromium have also been used. Formaldehyde and formaldehyde donors such as h exam ethyl en etetra am in e can be used to form cross-links. Removal of water from a proteia will also often denature the material. [Pg.234]

Polymerization. Thermal polymerization or curing of an ink film at elevated temperatures can foUow many different chemical paths. Condensation and cross-linking reactions may be accompHshed with or without the use of catalysts. However, this method of drying generally has not been widely used for printing inks, except those used for metal and glass decoration, and some clear coatings. [Pg.247]

In addition to the above techniques, inverse gas chromatography, swelling experiments, tensile tests, mechanical analyses, and small-angle neutron scattering have been used to determine the cross-link density of cured networks (240—245). Si soHd-state nmr and chemical degradation methods have been used to characterize cured networks stmcturaHy (246). H- and H-nmr and spin echo experiments have been used to study the dynamics of cured sihcone networks (247—250). [Pg.49]

By these methods microorganisms are cross linked by chemical substances, e.g. by glutar-dialdehyde. The surfaces (especially the proteins) of microorganisms are linked with the... [Pg.222]

The final conclusion of this short discussion is that electropolymerization is a fast method (a film of about 5 //mean be obtained by polarization in 1 rnin) that uses a complex mechanism (Fig. 12) in which electropolymerization, cross linking, degradation, and chemical polymerization can coexist to produce a mixed material with a cross-linked and electroactive part and a passive fraction.67-71 However, ifwe control the variables acting on the kinetics of the different simultaneous reactions, the complexity also provides flexibility, allowing us to obtain materials tailored for specific applications. [Pg.333]

The multiple emulsion technique includes three steps 1) preparation of a primary oil-in-water emulsion in which the oil dispersed phase is constituted of CH2CI2 and the aqueous continuous phase is a mixture of 2% v/v acetic acid solution methanol (4/1, v/v) containing chitosan (1.6%) and Tween (1.6, w/v) 2) multiple emulsion formation with mineral oil (oily outer phase) containing Span 20 (2%, w/v) 3) evaporation of aqueous solvents under reduced pressure. Details can be found in various publications [208,209]. Chemical cross-linking is an option of this method enzymatic cross-linking can also be performed [210]. Physical cross-linking may take place to a certain extent if chitosan is exposed to high temperature. [Pg.179]

Radiation-induced modification or processing of a polymer is a relatively sophisticated method than conventional thermal and chemical processes. The radiation-induced changes in polymer materials such as plastics or elastomers provide some desirable combinations of physical and chemical properties in the end product. Radiation can be applied to various industrial processes involving polymerization, cross-linking, graft copolymerization, curing of paints and coatings, etc. [Pg.861]

In 1839, Charles Goodyear discovered that sulfur could cross-link polymer chains and patented the process in 1844 [1]. Since then rubber became a widely usable material. By the year 1853, natural rubber (NR) was in short supply. So attempts were made to undo what Goodyear had accomplished. Goodyear himself was involved in trying to reclaim vulcanized rubber to overcome the shortage of NR. Later, as a consequence of World War I, Germany introduced synthetic rubbers, namely the Buna rubbers, which raised the curiosity of polymer chemists all over the world. Subsequently, synthetic rubbers with tailor-made properties were born. This was followed by the discovery of new methods and chemicals for vulcanization and processing. It is obvious... [Pg.1043]


See other pages where Cross-linking chemical methods is mentioned: [Pg.570]    [Pg.570]    [Pg.62]    [Pg.550]    [Pg.550]    [Pg.287]    [Pg.216]    [Pg.27]    [Pg.30]    [Pg.597]    [Pg.196]    [Pg.34]    [Pg.372]    [Pg.456]    [Pg.30]    [Pg.1270]    [Pg.23]    [Pg.153]    [Pg.144]    [Pg.427]    [Pg.219]    [Pg.60]    [Pg.228]    [Pg.277]    [Pg.291]    [Pg.27]    [Pg.141]    [Pg.13]    [Pg.465]    [Pg.173]    [Pg.97]    [Pg.258]    [Pg.293]    [Pg.554]    [Pg.873]    [Pg.894]   
See also in sourсe #XX -- [ Pg.699 ]




SEARCH



Chemical cross-linking

Chemical cross-links

Chemically-cross-linked

Cross-linking methods

LinK method

© 2024 chempedia.info