Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cresol-formaldehyde condensates

The epoxy cresol—novolak resins (2) are prepared by glycidylation of o-cresol—formaldehyde condensates in the same manner as the phenol—novolak resins. The o-cresol—formaldehyde condensates are prepared under acidic conditions with formaldehyde—o-cresol ratios of less than unity. [Pg.363]

This paper illustrates its application to problems encountered in studies on polymer modification reactions, polymer epimerization reactions, p-cresol-formaldehyde condensation reactions, and monomer-promoted polyaddition reactions. A 23-statement CSMP program was written, for example, to duplicate the predictor-corrector program of Bauer for simulating irreversible polymer modification reactions. [Pg.65]

The epoxy-cresol—novolaks resins are prepared by glyci-dylation of o-cresol-formaldehyde condensates in the same manner as phenol-novolak resins, o-cresol-formaldehyde condensates are prepared under acidic conditions with HCHO-o-cresol ratios of less than unity. The o-cresol novolacs of commercial significance possesses degrees of polymerization, n, of 1.7-4.4 and the epoxide functionality of the resultant glycidylated resins varies from 2.7 to 5.4. Softening points (Durrain s) of the products are 35-99°C [31]. [Pg.116]

The resin most often used with DNQ resists is the reddish-colored novolac (cresol-formaldehyde condensation polymers). The resins adhere well to most metal surfaces and form good films. Additionally, they are soluble in alkaline solutions and many common solvents, and they are capable of coupling with the DNQ sensitizer. The structure of novolac (X) is shown below. °... [Pg.302]

Novolacs produces by cresol-formaldehyde condensation have been the polymers of choice for the DNS photochemistry. These novolac resins are usually synthesized from commercial cresol mixtures, which contain about 60% m-cresol, 30% p-cresol and 10% of various other aromatic phenols. [Pg.604]

Table 145. hRf-values of some p-cresol-formaldehyde condensation products (see [30] for others) on silica gel layers, using solvents I Benzene-methanol-acetic oaM (95 2,5 -f- 2,5) II Benzene-methanol (75 + 25) III Chloroform-methanol (96 -j- 4). [Pg.658]

Chem. Descrip. Sodium salt of a cresol-formaldehyde condensation prod. [Pg.340]

Uses Surfactant for cleansers, electroplating baths Rapidaminreserve CL [Clariant/Functional Chems.j Chem. Descrip. Cresol-formaldehyde condensation prod., sodium salt tonic Nature Anionic Uses Dispersant for crop formulations Regulatory EINECS listed Properties Liq. = 35% act. [Pg.910]

The dispersion agents used are primarily lignin sulfonates (sulfite cellulose liquors) condensation products of naphthalene, sulfuric acid, and formaldehyde condensation products of m - and o-cresol, formaldehyde, and 2-hydroxynaphtha-lene-6-sulfonic acid [93-01-6] or mixtures of these products [46], Literature on dispersing agents is relatively scarce [47-49],... [Pg.146]

Novolac Preparation Novolac resins were prepared by an acid catalyzed condensation of m- and p-cresols with formaldehyde. A three necked flask with a distillation reflux condenser, thermometer and mechanical stirrer was charged with m- and p-cresols, formaldehyde aqueous solution, and cone, hydrochloric acid as a catalyst. The flask was immersed in an oil bath and heated to 90 C and kept for 2 hours while undergoing stirring. After the flask was cooled to room temperature on standing, the supernatant layer of the contents was removed by decantation. Then the volatile components were eliminated by distillation under a nitrogen gas flow and slow heating to 175°C. The molten content was poured into a stainless steel tray to cool. [Pg.169]

Phenolic plastics. Collective designation for phenolic resin-based plastics. Phenolic resins are produced by condensation of phenol and/or its homologues, such as cresol, with an aldehyde, such as formaldehyde or with an aldehyde-releasing material such as hexamethylenetetramine. Phenol/formaldehyde and/or cresol/formaldehyde resins are used as binding materials in fibre board, laminated paper and fabrics. In phenolic moulding compounds, the proportion of filler (such as wood flour, rock flour, asbestos, stone powder, mica, glass fibre) can be equal to that of the resin. These thermosets can be processed by compression or injection moulding into black or dark-coloured products mainly for the electric industry. [Pg.18]

Phenolic ion exchangers derived from a phenol-formaldehyde condensation reaction appeared in the first generation of ion-exchange polymers. More recently, styrene-divinylbenzene copolymers incorporating azo-substituted cresol and salicylic acid, catechol, hydroquinone, and benzoquinone have been described. The quinone-type polymers selectively sorb Hg(III) and the catechol resins sorb Cr(VI). [Pg.727]

Epoxy NovolaC Resins. Epoxy novolacs are multifunctional epoxies based on phenolic formaldehyde novolacs. Both epoxy phenol novolac resins (EPN) and epoxy cresol novolac resins (ECN) have attained commercial importance (53). The former is made by epoxidation of the phenol-formaldehyde condensates (novolacs) obtained from acid-catalyzed condensation of phenol and formaldehyde (see Phenolic Resins). This produces random ortho- and para-methylene bridges. [Pg.2676]

Stain-resist agents containing a formaldehyde condensate of mainly bishy-droxyphenyl sulfate and the remainder of cresol, methyl p-hydroxybenzoate, or p-... [Pg.594]

Positive-Tone Photoresists based on Dissolution Inhibition by Diazonaphthoquinones. The intrinsic limitations of bis-azide—cycHzed mbber resist systems led the semiconductor industry to shift to a class of imaging materials based on diazonaphthoquinone (DNQ) photosensitizers. Both the chemistry and the imaging mechanism of these resists (Fig. 10) differ in fundamental ways from those described thus far (23). The DNQ acts as a dissolution inhibitor for the matrix resin, a low molecular weight condensation product of formaldehyde and cresol isomers known as novolac (24). The phenoHc stmcture renders the novolac polymer weakly acidic, and readily soluble in aqueous alkaline solutions. In admixture with an appropriate DNQ the polymer s dissolution rate is sharply decreased. Photolysis causes the DNQ to undergo a multistep reaction sequence, ultimately forming a base-soluble carboxyHc acid which does not inhibit film dissolution. Immersion of a pattemwise-exposed film of the resist in an aqueous solution of hydroxide ion leads to rapid dissolution of the exposed areas and only very slow dissolution of unexposed regions. In contrast with crosslinking resists, the film solubiHty is controUed by chemical and polarity differences rather than molecular size. [Pg.118]

I ovolac Synthesis and Properties. Novolac resins used in DNQ-based photoresists are the most complex, the best-studied, the most highly engineered, and the most widely used polymers in microlithography. Novolacs are condensation products of phenoHc monomers (typically cresols or other alkylated phenols) and formaldehyde, formed under acid catalysis. Figure 13 shows the polymerization chemistry and polymer stmcture formed in the step growth polymerization (31) of novolac resins. [Pg.120]

Phenohc resins are produced by the condensation of phenol or a substituted phenol, such as cresol, with formaldehyde. These low cost resins have been produced commercially for more than 100 years and in the 1990s are produced by more than 40 companies in the United States. They are employed as adhesives in the plywood industry and in numerous under-the-hood appHcations in the automotive industry. Because of the cycHc nature of the automotive and home building industry, the consumption of phenol for the production of phenohc resins is subject to cycHc swings greater than that of the economy as a whole. [Pg.291]

Methylphenol is converted to 6-/ f2 -butyl-2-methylphenol [2219-82-1] by alkylation with isobutylene under aluminum catalysis. A number of phenoHc anti-oxidants used to stabilize mbber and plastics against thermal oxidative degradation are based on this compound. The condensation of 6-/ f2 -butyl-2-methylphenol with formaldehyde yields 4,4 -methylenebis(2-methyl-6-/ f2 butylphenol) [96-65-17, reaction with sulfur dichloride yields 4,4 -thiobis(2-methyl-6-/ f2 butylphenol) [96-66-2] and reaction with methyl acrylate under base catalysis yields the corresponding hydrocinnamate. Transesterification of the hydrocinnamate with triethylene glycol yields triethylene glycol-bis[3-(3-/ f2 -butyl-5-methyl-4-hydroxyphenyl)propionate] [36443-68-2] (39). 2-Methylphenol is also a component of cresyHc acids, blends of phenol, cresols, and xylenols. CresyHc acids are used as solvents in a number of coating appHcations (see Table 3). [Pg.67]

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terrninators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. Eor the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimise formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ fZ-butylphenol [98-54-4] for manufacture of phenoHc resins. The tert-huty group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

The phenolics are resinous materials produced by condensation of a phenol, or mixture of phenols, with an aldehyde. Phenol itself and the cresols are the most widely used phenols whilst formaldehyde and, to a much less extent, furfural are almost exclusively used as the aldehydes. [Pg.635]

In addition to the above possible mechanisms the possibility of reaction at w-positions should not be excluded. For example, it has been shown by Koebner that o- and p-cresols, ostensibly difunctional, can, under certain conditions, react with formaldehyde to give insoluble and infusible resins. Furthermore, Megson has shown that 2,4,6-trimethylphenol, in which the two ortho- and the one para-positions are blocked, can condense with formaldehyde under strongly acidic conditions. It is of interest to note that Redfam produced an infusible resin from 3,4,5,-trimethylphenol under alkaline conditions. Here the two m- and the p-positions were blocked and this experimental observation provides supplementary evidence that additional functionalities are developed during reaction, for example in the formation of quinone methides. [Pg.643]

Baekeland recognized that the trifunctional phenol would produce network polymers and therefore used difunctional ortho- or para-substituted phenols to produce linear paint resins. Linear thermoplastic products are formed by alkaline or acid condensation of formaldehyde with phenol derivatives such as /r-cresol (structure 4.81). [Pg.120]

The Lurgi gasifiers used by Sasol operate at "low" temperatures and consequently phenols, and "tars" are "distilled" from the coal at the top of the gasifier, and carried out with the raw gas. On condensation two liquid phases are formed, "tar" and "gas liquor" (water). The "tar acids" (phenol, cresols etc) are dissolved in the "gas liquor" which is fed to the Phenosolvan unit where the acids are recovered by counter current extraction with butyl acetate or diisopropyl ether. The crude tar acids are fractionated to yield phenol, ortho, meta and para cresol and xylenols. The phenol is further refined to produce a high purity, colourless and stable product. Phenol is used mainly in the production of formaldehyde resins while the cresols are used as flotation frothers and in the manufacture of pesticides etc. [Pg.32]


See other pages where Cresol-formaldehyde condensates is mentioned: [Pg.193]    [Pg.973]    [Pg.346]    [Pg.193]    [Pg.973]    [Pg.346]    [Pg.44]    [Pg.94]    [Pg.117]    [Pg.15]    [Pg.206]    [Pg.46]    [Pg.419]    [Pg.175]    [Pg.342]    [Pg.11]    [Pg.50]    [Pg.146]    [Pg.598]   


SEARCH



Cresol formaldehyde

Cresolic

Cresols

Formaldehyde condensations

© 2024 chempedia.info