Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion rates/resistance

Corrosion protection of metals can take many fonns, one of which is passivation. As mentioned above, passivation is the fonnation of a thin protective film (most commonly oxide or hydrated oxide) on a metallic surface. Certain metals that are prone to passivation will fonn a thin oxide film that displaces the electrode potential of the metal by +0.5-2.0 V. The film severely hinders the difflision rate of metal ions from the electrode to tire solid-gas or solid-liquid interface, thus providing corrosion resistance. This decreased corrosion rate is best illustrated by anodic polarization curves, which are constructed by measuring the net current from an electrode into solution (the corrosion current) under an applied voltage. For passivable metals, the current will increase steadily with increasing voltage in the so-called active region until the passivating film fonns, at which point the current will rapidly decrease. This behaviour is characteristic of metals that are susceptible to passivation. [Pg.923]

Other techniques to detennine the corrosion rate use instead of DC biasing, an AC approach (electrochemical impedance spectroscopy). From the impedance spectra, the polarization resistance (R ) of the system can be detennined. The polarization resistance is indirectly proportional to j. An advantage of an AC method is given by the fact that a small AC amplitude applied to a sample at the corrosion potential essentially does not remove the system from equilibrium. [Pg.2720]

Atmospheric corrosion results from a metal s ambient-temperature reaction, with the earth s atmosphere as the corrosive environment. Atmospheric corrosion is electrochemical in nature, but differs from corrosion in aqueous solutions in that the electrochemical reactions occur under very thin layers of electrolyte on the metal surface. This influences the amount of oxygen present on the metal surface, since diffusion of oxygen from the atmosphere/electrolyte solution interface to the solution/metal interface is rapid. Atmospheric corrosion rates of metals are strongly influenced by moisture, temperature and presence of contaminants (e.g., NaCl, SO2,. ..). Hence, significantly different resistances to atmospheric corrosion are observed depending on the geographical location, whether mral, urban or marine. [Pg.2731]

Gaseous Hydrogen Chloride. Cast Hon (qv), mild steel, and steel alloys are resistant to attack by dry, pure HCl at ambient conditions and can be used at temperatures up to the dissociation temperature of HCl. The corrosion rate at 300°C is reported to be 0.25 cm/yr and no ignition point has been found for mild steel at 760°C, at which temperature HCl is dissociated to the extent of 0.2%. [Pg.446]

Stainless steel alloys show exceUent corrosion resistance to HCl gas up to a temperature of 400°C. However, these are normally not recommended for process equipment owing to stress corrosion cracking during periods of cooling and shut down. The corrosion rate of Monel is similar to that of mild steel. Pure (99.6%) nickel and high nickel alloys such as Inconel 600 can be used for operation at temperatures up to 525°C where the corrosion rate is reported to be about 0.08 cm/yr (see Nickel and nickel alloys). [Pg.446]

Corrosion. Copper-base alloys are seriously corroded by sodium thiosulfate (22) and ammonium thiosulfate [7783-18-8] (23). Corrosion rates exceed 10 kg/(m yr) at 100°C. High siUcon cast iron has reasonable corrosion resistance to thiosulfates, with a corrosion rate <4.4 kg/(m yr)) at 100°C. The preferred material of constmction for pumps, piping, reactors, and storage tanks is austenitic stainless steels such as 304, 316, or Alloy 20. The corrosion rate for stainless steels is <440 g/(m yr) at 100°C (see also Corrosion and corrosion control). [Pg.27]

The titanium oxide film consists of mtile or anatase (31) and is typically 250-A thick. It is insoluble, repairable, and nonporous in many chemical media and provides excellent corrosion resistance. The oxide is fully stable in aqueous environments over a range of pH, from highly oxidizing to mildly reducing. However, when this oxide film is broken, the corrosion rate is very rapid. Usually the presence of a small amount of water is sufficient to repair the damaged oxide film. In a seawater solution, this film is maintained in the passive region from ca 0.2 to 10 V versus the saturated calomel electrode (32,33). [Pg.102]

Zirconium is completely resistant to sulfuric acid up to Foiling temperatures, at concentrations up to 70 wt %, except that the heat-affected zones at welds have lower resistance in >55 wt % concentration acid (Fig. 1). Fluoride ions must be excluded from the sulfuric acid. Cupric, ferric, or nitrate ions significantly increase the corrosion rate of zirconium in 65—75 wt % sulfuric acid. [Pg.429]

Materials of Construction. Glass has excellent corrosion-resistance to wet or dry bromine. Lead is very usefiil for bromine service if water is less than 70 ppm. The bromine corrosion rate increases with concentrations of water and organics. Tantalum and niobium have excellent corrosion-resistance to wet or dry bromine. Nickel has usefiil resistance for dry bromine but is rapidly attacked by wet bromine. The fluoropolymers Kynar, Halar, and Teflon are highly resistant to bromine but are somewhat permeable. The rate depends on temperature, pressure, and stmcture (density) of fluoropolymer (63). [Pg.288]

Refining and Isomerization. Whatever chlorination process is used, the cmde product is separated by distillation. In successive steps, residual butadiene is stripped for recycle, impurities boiling between butadiene (—5° C) and 3,4-dichloto-l-butene [760-23-6] (123°C) are separated and discarded, the 3,4 isomer is produced, and 1,4 isomers (140—150°C) are separated from higher boiling by-products. Distillation is typically carried out continuously at reduced pressure in corrosion-resistant columns. Ferrous materials are avoided because of catalytic effects of dissolved metal as well as unacceptable corrosion rates. Nickel is satisfactory as long as the process streams are kept extremely dry. [Pg.38]

For most environments quantitative studies have been reported describing the corrosion rate of various materials including a number of corrosion-resistant alloys (30). For example. Table 4 gives weight losses suffered by corrosion-resistant alloys in a solution of 28% phosphoric acid [7664-38-2] 20—22% sulfuric acid [7664-93-9] and 1—15% duoride (36). [Pg.282]

Corrosivity. Corrosivity is an important factor in the economics of distillation. Corrosion rates increase rapidly with temperature, and in distillation the separation is made at boiling temperatures. The boiling temperatures may require distillation equipment of expensive materials of constmction however, some of these corrosion-resistant materials are difficult to fabricate. For some materials, eg, ceramics (qv), random packings may be specified, and this has been a classical appHcation of packings for highly corrosive services. On the other hand, the extensive surface areas of metal packings may make these more susceptible to corrosion than plates. Again, cost may be the final arbiter (see Corrosion and corrosion control). [Pg.175]

Linear polarization re.slstance probe.s. LPR probes are more recent in origin, and are steadily gaining in use. These probes work on a principle outlined in an ASTM guide on making polarization resistance measurements, providing instantaneous corrosion rate measurements (G59, Standard Practice for Conducting Potentiodynamic Polarization Resistance Measurements ). [Pg.2439]

Polarization probes rely on the relationship of the applied potential to the output current per unit area (current density). The slope of applied potential versus current density extrapolated through the origin, yields the polarization resistance Rp, which can be related to the corrosion rate. [Pg.2440]

Use of Corrosion Probes The major use of corrosion monitoring probes is to measure the corrosion rate in the plant or the field. In addition to corrosion-rate measurements, corrosion probes can be used to detect process upsets that may change the corrosion resistance of the equipment of interest. This is usually equally as important a measurement as corrosion rate since a change in the process conditions can lead to dramatic changes in the corrosion rate. [Pg.2440]

The initial measurement of electrical resistance must be made after considerable time. Phenomenological information has been determined based on the corrosion rate expected at what period of time to initiate readings of the electrical resistance. Since these values are based on experiential fac tors rather than on fundamental (so-called first) principles, correlation tables and lists of suggested thicknesses, compositions, and response times for usage of ER-type probes have developed over time, and these have been incorporated into the values read out of monitoring systems using the ER method. [Pg.2441]

Measurements of polarization resistance Rp, given by LPR probes, can lead to measurement of the corrosion rate at a specific instant, since values of Rp are instantaneous. [Pg.2441]

Carbon steel is easily the most commonly used material in process plants despite its somewhat limited corrosion resistance. It is routinely used for most organic chemicals and neutral or basic aqueous solutions at moderate temperatures. It is also used routinely for the storage of concentrated sulfuric acid and caustic soda [up to 50 percent and 55°C (I30°F)]. Because of its availability, low cost, and ease of fabrication steel is frequently used in services with corrosion rates of 0.13 to 0.5 mm/y (5 to 20 mils/y), with added thickness (corrosion allowance) to assure the achievement of desired service life. Product quahty requirements must be considered in such cases. [Pg.2443]

Corrosion resistance of stainless steel is reduced in deaerated solutions. This behavior is opposite to the behavior of iron, low-alloy steel, and most nonferrous metals in oxygenated waters. Stainless steels exhibit very low corrosion rates in oxidizing media until the solution oxidizing power becomes great enough to breach the protective oxide locally. The solution pH alone does not control attack (see Chap. 4, Underdeposit Corrosion ). The presence of chloride and other strong depassivating chemicals deteriorates corrosion resistance. [Pg.103]

Aluminum is resistant to nitric acid at concentrations above 80%. At 50% nitric acid concentration at room temperature, corrosion rates are as high as 0.08 in. (0.20 cm) per year. [Pg.162]

Copper alloys are attacked at high pH. However, attack is usually caused not by elevated pH alone but because of copper complexation by ammonia or substituted ammonium compounds. In fact, copper resists corrosion in caustic solutions. For example, corrosion rates in hot caustic soda may be less than 1 mil/y (0.025 mm/y). [Pg.187]

As corrosion proceeds, reaction by-products may form on the metal surfaces, creating a resistance to electrical exchanges at these surfaces. Consequently, the reaction rate diminishes correspondingly. If the corrosion reaction is stopped, a time-dependent recovery occurs if the reaction is restarted, the initial corrosion rate is reestablished. This effect is often observed in conventional dry cells and automobile batteries. [Pg.356]

An interesting effect is sometimes observed when cupronickels are galvanically coupled to less noble materials. The corrosion rate of the active metal is increased and the corrosion rate of the cupronickel is diminished, as expected. The diminished corrosion rate of the cupronickel can, however, diminish its fouling resistance since reduced production of copper ions lowers toxicity to copper-ion-sensitive organisms. [Pg.366]

Table 5-2 Corrosion rate and specific coating resistance r ° after a long exposure of steel pipe sections with damage-free coating. Table 5-2 Corrosion rate and specific coating resistance r ° after a long exposure of steel pipe sections with damage-free coating.
High Chromium Alloys. Field experience and laboratory data indicate that alloys high in chromium offer the best fuel ash corrosion resistance. The table below shows laboratory corrosion rates for engineering alloys which have been exposed to several types of vanadium-sodium fuel ash melts. [Pg.266]

If the amount of metal removal by erosion is significant the surface will probably be continually active. Metal loss will be the additive effect of erosion and active corrosion. Sometimes the erosion rate is higher than that of active corrosion. The material selection judgment can then disregard coirosion and proceed on the basis of erosion resistance provided the corrosion rates of aetive surfaces of the alloys considered are not much different. As an example of magnitudes, a good high-chromium iron may lose metal from erosion only a tenth as fast as do the usual stainless steels. [Pg.270]

Tables 2.3 through 2.5 give general corrosion-resistance ratings of different materials. Table 2.3 lists various metals and Table 2.4 gives ratings for various nonmetals. Table 2.5 gives typical corrosion rates of steel and zinc panels exposed to the atmosphere in various locations about the U.S. Figure 2.1 also illustrates relative corrosion rates of steel and zinc in major areas of the world. Tables 2.3 through 2.5 give general corrosion-resistance ratings of different materials. Table 2.3 lists various metals and Table 2.4 gives ratings for various nonmetals. Table 2.5 gives typical corrosion rates of steel and zinc panels exposed to the atmosphere in various locations about the U.S. Figure 2.1 also illustrates relative corrosion rates of steel and zinc in major areas of the world.

See other pages where Corrosion rates/resistance is mentioned: [Pg.383]    [Pg.383]    [Pg.1945]    [Pg.342]    [Pg.130]    [Pg.45]    [Pg.45]    [Pg.370]    [Pg.136]    [Pg.330]    [Pg.2427]    [Pg.2430]    [Pg.2432]    [Pg.2437]    [Pg.102]    [Pg.363]    [Pg.229]    [Pg.144]    [Pg.170]    [Pg.257]    [Pg.400]    [Pg.93]    [Pg.94]    [Pg.59]   


SEARCH



Corrosion rates/resistance aqueous

Corrosion rates/resistance atmospheric

Corrosion rates/resistance chemicals

Corrosion rates/resistance industrial atmospheres

Corrosion rates/resistance inorganic chemicals

Corrosion rates/resistance location

Corrosion rates/resistance marine atmospheres

Corrosion resistance

Corrosion-resistance Critical shear rate

Polarization resistance techniques corrosion-rate measurements

Zirconium alloys, corrosion rates resistant

© 2024 chempedia.info