Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copper, corrosion resistance

Monel , A line of nickel -copper corrosion-resistant alloys available in wrought and cast forms. [Pg.982]

When considering the second kind electrodes in Section 2.3, copper covered by CujO was referred to as a prominent example. Cuprous oxide layers developed in electrochemical systems are interesting from various points of view. In the first place, such layers are known to form during copper corrosion. Research in this field are very important and large in number (see, e.g.. Ref [1-12] and references therein). Extensive investigations of photoelectrochemical phenomena in these systems provide further insights into the corrosion mechanism and may be useful in improving copper corrosion resistance. However, these problems are not the main objective of the present review. [Pg.241]

PPy Polythiophene Polythiophene polymerized on a polypyrrole coated copper electrode coating yielded copper corrosion resistance 1113... [Pg.206]

For example,copper has relatively good corrosion resistance under non-oxidizing conditions. It can be alloyed with zinc to yield a stronger material (brass), but with lowered corrosion resistance. Flowever, by alloying copper with a passivating metal such as nickel, both mechanical and corrosion properties are improved. Another important alloy is steel, which is an alloy between iron (>50%) and other alloying elements such as carbon. [Pg.923]

It is extensively used for making stainless steel and other corrosion-resistant alloys such as Invar(R), Monel(R), Inconel(R), and the Hastelloys(R). Tubing made of copper-nickel alloy is extensively used in making desalination plants for converting sea water into fresh water. [Pg.67]

The Fe, Co, and Ni deposits are extremely fine grained at high current density and pH. Electroless nickel, cobalt, and nickel—cobalt alloy plating from fluoroborate-containing baths yields a deposit of superior corrosion resistance, low stress, and excellent hardenabiUty (114). Lead is plated alone or ia combination with tin, iadium, and antimony (115). Sound iasulators are made as lead—plastic laminates by electrolyticaHy coating Pb from a fluoroborate bath to 0.5 mm on a copper-coated nylon or polypropylene film (116) (see Insulation, acoustic). Steel plates can be simultaneously electrocoated with lead and poly(tetrafluoroethylene) (117). Solder is plated ia solutioas containing Pb(Bp4)2 and Sn(Bp4)2 thus the lustrous solder-plated object is coated with a Pb—Sn alloy (118). [Pg.168]

Anodes. Lead—antimony (6—10 wt %) alloys containing 0.5—1.0 wt % arsenic have been used widely as anodes in copper, nickel, and chromium electrowinning and metal plating processes. Lead—antimony anodes have high strength and develop a corrosion-resistant protective layer of lead dioxide during use. Lead—antimony anodes are resistant to passivation when the current is frequendy intermpted. [Pg.57]

Lead—copper alloys are specified because of superior mechanical properties, creep resistance, corrosion resistance, and high temperature stabiUty compared to pure lead. The mechanical properties of lead—copper alloys are compared to pure lead, and to lead—antimony and lead—calcium alloys in Tables 4 and 5. [Pg.60]

Copper and nickel can be alloyed with zinc to form nickel silvers. Nickel silvers are ductile, easily formed and machined, have good corrosion resistance, can be worked to provide a range of mechanical properties, and have an attractive white color. These alloys are used for ornamental purposes, as sHverplated and uncoated tableware and flatware in the electrical iadustry as contacts, connections, and springs and as many formed and machined parts (see Electrical connectors). [Pg.6]

Copper is universally used as the metal plating for tape because it can be easily laminated with copper and the various plastic tapes. Copper is readily etched and has excellent electrical and thermal conductivity in both electrodeposited and roUed-annealed form. The tape metal plating is normally gold- or tin-plated to ensure good bondabiUty during inner- and outer-lead bonding operations and to provide better shelf life and corrosion resistance. [Pg.529]

Copper and tin phosphides are used as deoxidants in the production of the respective metals, to increase the tensile strength and corrosion resistance in phosphor bronze [12767-50-9] and as components of brazing solders (see Solders and brazing alloys). Phosphor bronze is an alloy of copper and 1.25—11 wt % tin. As tin may be completely oxidized in a copper alloy in the form of stannic oxide, 0.03—0.35 wt % phosphoms is added to deoxidize the alloy. Phosphor copper [12643-19-5] is prepared by the addition of phosphoms to molten copper. Phosphor tin [66579-64-4] 2.5—3 wt % P, is made for the deoxidation of bronzes and German silver. [Pg.378]

Sihcon is also used in the copper (qv) industry for production of sihcon bronzes. The addition of sihcon improves fluidity, minimizes dross formation, and enhances corrosion resistance and strength. [Pg.537]

Stainless Steels. Stainless steels are more resistant to msting and staining than plain carbon and low ahoy steels (47—50). This superior corrosion resistance results from the presence of chromium. Although other elements, such as copper, aluminum, shicon, nickel, and molybdenum, also increase corrosion resistance these are limited in their usefiilness. [Pg.397]

Corrosion. Copper-base alloys are seriously corroded by sodium thiosulfate (22) and ammonium thiosulfate [7783-18-8] (23). Corrosion rates exceed 10 kg/(m yr) at 100°C. High siUcon cast iron has reasonable corrosion resistance to thiosulfates, with a corrosion rate <4.4 kg/(m yr)) at 100°C. The preferred material of constmction for pumps, piping, reactors, and storage tanks is austenitic stainless steels such as 304, 316, or Alloy 20. The corrosion rate for stainless steels is <440 g/(m yr) at 100°C (see also Corrosion and corrosion control). [Pg.27]

Vanadium is resistant to attack by hydrochloric or dilute sulfuric acid and to alkali solutions. It is also quite resistant to corrosion by seawater but is reactive toward nitric, hydrofluoric, or concentrated sulfuric acids. Galvanic corrosion tests mn in simulated seawater indicate that vanadium is anodic with respect to stainless steel and copper but cathodic to aluminum and magnesium. Vanadium exhibits corrosion resistance to Hquid metals, eg, bismuth and low oxygen sodium. [Pg.382]

The metal parts of the injection molder, ie, the liner, torpedo, and nozzle, that contact the hot molten resin must be of the noncatalytic type to prevent accelerated decomposition of the polymer. In addition, they must be resistant to corrosion by HCl. Iron, copper, and zinc are catalytic to the decomposition and caimot be used, even as components of alloys. Magnesium is noncatalytic but is subject to corrosive attack, as is chromium when used as plating. Nickel alloys such as Duranickel, HasteUoy B, and HasteUoy C are recommended as constmction materials for injection-molding metal parts. These and pure nickel are noncatalytic and corrosion-resistant however, pure nickel is rather soft and is not recommended. [Pg.440]

Minor additions of arsenic (0.02—0.5%) to copper (qv) and copper alloys (qv) raise the recrystaUization temperature and improve corrosion resistance. In some brass alloys, small amounts of arsenic inhibit de2incification (22), and minimise season cracking. [Pg.329]


See other pages where Copper, corrosion resistance is mentioned: [Pg.97]    [Pg.210]    [Pg.280]    [Pg.97]    [Pg.210]    [Pg.280]    [Pg.1089]    [Pg.347]    [Pg.145]    [Pg.383]    [Pg.383]    [Pg.384]    [Pg.384]    [Pg.124]    [Pg.80]    [Pg.61]    [Pg.321]    [Pg.132]    [Pg.134]    [Pg.138]    [Pg.138]    [Pg.187]    [Pg.189]    [Pg.7]    [Pg.533]    [Pg.322]    [Pg.337]    [Pg.337]    [Pg.396]    [Pg.392]    [Pg.61]    [Pg.61]    [Pg.61]    [Pg.412]    [Pg.433]    [Pg.198]   
See also in sourсe #XX -- [ Pg.793 ]




SEARCH



Copper coatings corrosion resistance

Corrosion resistance

© 2024 chempedia.info