Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Considerations in Polymerizations

PTT is polymerized at a much lower temperature between 250 and 275 °C. Because of its higher melt degradation rate and a faster crystallization rate, it requires special consideration in polymerization, pelletizing and solid-state treatment. [Pg.364]

In any polymerization process one must be concerned with removal of the coproduct (typically H2O or HCl) so that equilibrium limitations do not limit the polymer size. The removal of the product in condensation polymerization to attain higher polymer lengths is a major consideration in polymerization reactor design. This can be done by withdrawing water vapor or by using two phases so that the water and polymer migrate to different phases. [Pg.465]

One of the major consideration in polymerization reactors is that the viscosity of the solution changes with degree of polymerization, going from very low viscosity initially to a solid at complete polymerization. This means that tubular reactor must be used very cautiously for polymerization because the viscosity will increase, especially near the wall where the residence time is longest. Many of these fluids also have viscosities that are dependent on the shear rate. [Pg.467]

The ratio of back- and end-biting reactions depends on the reaction conditions, and may differ considerably in polymerizations of various monomers. In cationic polymerization, methyloxirane produces mainly a mixture of cyclic tetramers [335] and chloromethyloxirane yields both dimers and tetramers [336]. Under similar conditions, 1,3-dioxolane or 1,3-dioxepane yield a number of cyclic derivatives [337], the distribution of cyclics being in agreement with the Jacobson-Stockmayer theory [338],... [Pg.347]

Throughout this section we have used mostly p and u to describe the distribution of molecular weights. It should be remembered that these quantities are defined in terms of various concentrations and therefore change as the reactions proceed. Accordingly, the results presented here are most simply applied at the start of the polymerization reaction when the initial concentrations of monomer and initiator can be used to evaluate p or u. The termination constants are known to decrease with the extent of conversion of monomer to polymer, and this effect also complicates the picture at high conversions. Note, also, that chain transfer has been excluded from consideration in this section, as elsewhere in the chapter. We shall consider chain transfer reactions in the next section. [Pg.388]

Chain transfer is an important consideration in solution polymerizations. Chain transfer to solvent may reduce the rate of polymerization as well as the molecular weight of the polymer. Other chain-transfer reactions may iatroduce dye sites, branching, chromophoric groups, and stmctural defects which reduce thermal stabiUty. Many of the solvents used for acrylonitrile polymerization are very active in chain transfer. DMAC and DME have chain-transfer constants of 4.95-5.1 x lO " and 2.7-2.8 x lO " respectively, very high when compared to a value of only 0.05 x lO " for acrylonitrile itself DMSO (0.1-0.8 X lO " ) and aqueous zinc chloride (0.006 x lO " ), in contrast, have relatively low transfer constants hence, the relative desirabiUty of these two solvents over the former. DME, however, is used by several acryhc fiber producers as a solvent for solution polymerization. [Pg.277]

Economic considerations in the 1990s favor recovering butadiene from by-products in the manufacture of ethylene. Butadiene is a by-product in the C4 streams from the cracking process. Depending on the feedstocks used in the production of ethylene, the yield of butadiene varies. Eor use in polymerization, the butadiene must be purified to 994-%. Cmde butadiene is separated from C and C components by distillation. Separation of butadiene from other C constituents is accomplished by salt complexing/solvent extraction. Among the solvents used commercially are acetonitrile, dimethyl acetamide, dimethylform amide, and /V-methylpyrrolidinone (13). Based on the available cmde C streams, the worldwide forecasted production is as follows 1995, 6,712,000 1996, 6,939,000 1997, 7,166,000 and 1998, 7,483,000 metric tons (14). As of January 1996, the 1995 actual total was 6,637,000 t. [Pg.494]

An important part of the optimization process is the stabilization of the monomer-template assemblies by thermodynamic considerations (Fig. 6-11). The enthalpic and entropic contributions to the association will determine how the association will respond to changes in the polymerization temperature [18]. The change in free volume of interaction will determine how the association will respond to changes in polymerization pressure [82]. Finally, the solvent s interaction with the monomer-template assemblies relative to the free species indicates how well it will stabilize the monomer-template assemblies in solution [16]. Here each system must be optimized individually. Another option is simply to increase the concentration of the monomer or the template. In the former case, a problem is that the crosslinking as well as the potentially nonselective binding will increase simultaneously. In the... [Pg.174]

One of the first methods of polymerizing vinyl monomers was to expose the monomer to sunlight. In 1845, Blyth and Hoffman [7] obtained by this means a clear glassy polymeric product from styrene. Berthelot and Gaudechon [8] were the first to polymerize ethylene to a solid form and they used ultraviolet (UV) light for this purpose. The first demonstration of the chain reaction nature of photoinitiation of vinyl polymerization was done by Ostromislenski in 1912 [9]. He showed that the amount of poly(vinyl bromide) produced was considerably in excess of that produced for an ordinary chemical reaction. [Pg.244]

Juba, M. R., A Review of Mechanistic Considerations and Process Design Parameters for Precipitation Polymerization, in Polymerization Reactions and Processes, ACS Symposium Series No. 104, Washington D.C., 1979, pp. 267-279. [Pg.373]

The creation of active sites as well as the graft polymerization of monomers may be carried out by using radiation procedures or free-radical initiators. This review is not devoted to the consideration of polymerization mechanisms on the surfaces of porous solids. Such information is presented in a number of excellent reviews [66-68]. However, it is necessary to focus attention on those peculiarities of polymerization that result in the formation of chromatographic sorbents. In spite of numerous publications devoted to problems of composite materials produced by means of polymerization techniques, articles concerning chromatographic sorbents are scarce. As mentioned above, there are two principle processes of sorbent preparation by graft polymerization radiation-induced polymerization or polymerization by radical initiators. We will also pay attention to advantages and deficiencies of the methods. [Pg.160]

Safety. Since organic peroxides can be initiated by heat, mechanical shock, friction or contamination, an enormous problem in safety presents itself. Numerous examples of this problem have already been shown in this article. Additional examples include the foilowing methyl and ethyl hydroperoxides expld violently on heating or jarring, and their Ba salts also are extremely expl the alkylidene peroxides derived from low mw aldehydes and ketones are very sensitive and expld with considerable force polymeric peroxides of dimethyl ketene, -K>-0-C(CH3)2C(0)j-n, expld in the dry state by rubbing even at —80° peroxy acids, especially those of low mw, and diacetyl, dimethyl, dipropkmyl and methyl ethyl peroxides, when pure, must be handled only in small amts and... [Pg.680]

This is an important consideration in the selection of an optimum polymerization diluent, which is very easily neglected in laboratory investigations. Also, since little is known cd>out particle coalescence in the presence of mechanical agitation, extreme care must be taken in mixing scale-up. [Pg.275]

Rate of hydration of the polymeric materials has been shown to be an important consideration in regard to drug release. Gilding and Reed (24) demonstrated that water uptake increases as the glycolide ratio in the copolymer increases. The extent of block or random structure in the copolymer can also affect the rate of hydration and the rate of degradation (25). Careful control of the polymerization conditions is required in order to afford reproducible drug release behavior in a finished product. Kissel (26) showed drastic differences in water uptake between various homopolymers and copolymers of caprolactone, lactide, and glycolide. [Pg.3]

Lewis, D. H. and Tice, T. R., Polymeric considerations in the design of microencapsulated contraceptive steroids, in Long-Acting Contraceptive DeUvery Systems (G. I. Zatuchni, ed.). Harper and Row, Philadelphia, 1983, pp. 77-95. [Pg.36]

It is concluded that MALDI-ToFMS is a suitable method for direct analysis of low-MW additives in complex polymeric materials (in dissolution), in particular as a rapid screening technique (within 0.5 h). However, in order to turn this method into a general tool for identification and quantitation, considerably more work needs to be done. Identification of additives in polymeric matrices by means of MALDI-ToFMS would greatly benefit from reference libraries of additives contained in such matrices. This is not unlike the situation observed for ToF-SIMS. [Pg.709]

Quality assurance considerations lead to the need for appropriate reference materials, and their consistent and effective use to monitor the precision and accuracy of laboratory analyses. In this context, certified reference materials (CRMs), now still largely lacking in the polymer/additive area, play an important role. In previous years, some attempts have been undertaken to prepare some inorganic CRMs (VDA and PERM projects), but this is highly insufficient when we consider that some 60 elements are used in polymer/additive formulations. The lack of CRMs for organic compounds in polymeric matrices is an even more serious handicap. Nagoumey and Madan [122] have demonstrated that intermediate or finished in-house materials can be utilised successfully as QA reference materials. Good QC of polymer/additive formulations as yet has not been achieved. [Pg.739]

Table 1 summarizes several of the experimental methods discussed in this chapter. A need exists for new or revised methods for transport experimentation, particularly for therapeutic proteins or peptides in polymeric systems. An important criterion for the new or revised methods includes in situ sampling using micro techniques which simultaneously sample, separate, and analyze the sample. For example, capillary zone electrophoresis provides a micro technique with high separation resolution and the potential to measure the mobilities and diffusion coefficients of the diffusant in the presence of a polymer. Combining the separation and analytical components adds considerable power and versatility to the method. In addition, up-to-date separation instrumentation is computer-driven, so that methods development is optimized, data are acquired according to a predetermined program, and data analysis is facilitated. [Pg.122]

In this chapter we have discussed the thermodynamic formation of blends and their behavior. Both miscible and immiscible blends can be created to provide a balance of physical properties based on the individual polymers. The appropriate choice of the blend components can create polymeric materials with excellent properties. On the down side, their manufacture can be rather tricky due to rheological and thermodynamic considerations. In addition, they can experience issues with stability after manufacture due to phase segregation and phase growth. Despite these complications, they offer polymer engineers and material scientists a broad array of materials to meet many demanding application needs. [Pg.211]

Ease of access to the interior surface of stirred tanks is an additional advantage of this type of reactor. This consideration is particularly significant in polymerization reactors, where one needs to worry about periodic cleaning of internal surfaces. [Pg.250]


See other pages where Considerations in Polymerizations is mentioned: [Pg.25]    [Pg.25]    [Pg.25]    [Pg.25]    [Pg.491]    [Pg.167]    [Pg.114]    [Pg.98]    [Pg.362]    [Pg.461]    [Pg.248]    [Pg.205]    [Pg.331]    [Pg.168]    [Pg.37]    [Pg.75]    [Pg.28]    [Pg.194]    [Pg.128]    [Pg.159]    [Pg.117]    [Pg.159]    [Pg.735]    [Pg.174]    [Pg.284]    [Pg.137]    [Pg.200]    [Pg.5]    [Pg.163]   


SEARCH



© 2024 chempedia.info