Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conducting polymers liquid electrolyte

Hydrogel electrolytes which include water-absorbable cross-linked polymers can show high electrical conductivity like liquid electrolytes. Thus they are clearly promising materials for all-solid-state rechargeable alkaline batteries. The rechargeable alkaline batteries have a peculiar safety mechanism in overcharging and overdischarging. For example, in Ni-MH batteries. [Pg.1038]

Gel polymers offer slightly lower conductance than liquid electrolytes, but they provide structural improvement that improves the efficiency of ion transport mechanisms and cycle life [116,117]. Polyvinyl acetate (PVA) has been shown to offer good results in trapping aqueous electrolytes [116,118,119]. [Pg.185]

An electrically insulating but ion conducting ion-transport layer consisting of a solid electrolyte formulahon of polymers, liquid electrolytes, and lithium salts. [Pg.225]

Pandey GP, Hashmi SA (2009) Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte. JPower Sources 187(2) 627-634. doi 10.1016/j. jpowsour.2008.10.112... [Pg.309]

The first use of ionic liquids in free radical addition polymerization was as an extension to the doping of polymers with simple electrolytes for the preparation of ion-conducting polymers. Several groups have prepared polymers suitable for doping with ambient-temperature ionic liquids, with the aim of producing polymer electrolytes of high ionic conductance. Many of the prepared polymers are related to the ionic liquids employed for example, poly(l-butyl-4-vinylpyridinium bromide) and poly(l-ethyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide [38 1]. [Pg.324]

Noda and Watanabe [42] reported a simple synthetic procedure for the free radical polymerization of vinyl monomers to give conducting polymer electrolyte films. Direct polymerization in the ionic liquid gives transparent, mechanically strong and highly conductive polymer electrolyte films. This was the first time that ambient-temperature ionic liquids had been used as a medium for free radical polymerization of vinyl monomers. The ionic liquids [EMIM][BF4] and [BP][Bp4] (BP is N-butylpyridinium) were used with equimolar amounts of suitable monomers, and polymerization was initiated by prolonged heating (12 hours at 80 °C) with benzoyl... [Pg.324]

The conductivity of gelled electrolytes is determined primarily by the liquid and salt components. High liquid content, of the order of 40 percent, is required to attain conductivities comparable with those of the corresponding liquid electrolyte. At these liquid loading levels there is often insufficient mechanical strength, and although this effect may not be noticeable on 1-2 cm2 laboratory cells, it is certainly evident on scale-up [111]. Polymer blends such as PEO-MEEP are much more mechanically stable than MEEP itself and more conductive than PEO but there is little overall improvement of the room tern-... [Pg.514]

As electrochemists, our interest is attracted by the electrochemical properties of materials based on conducting polymers. The study of these properties requires putting a dry material inside an electrolyte. Since most of the electrolytes employed are based on a salt that is first dissolved in a solvent, we will refer to liquid electrolytes. At the end of this chapter we... [Pg.337]

In polymer electrolytes (even prevailingly crystalline), most of ions are transported via the mobile amorphous regions. The ion conduction should therefore be related to viscoelastic properties of the polymeric host and described by models analogous to that for ion transport in liquids. These include either the free volume model or the configurational entropy model . The former is based on the assumption that thermal fluctuations of the polymer skeleton open occasionally free volumes into which the ionic (or other) species can migrate. For classical liquid electrolytes, the free volume per molecule, vf, is defined as ... [Pg.140]

Polymeric conducting systems were also prepared by in situ polymerization of vinyl monomers in ionic liquids [22], with a conductivity of 1 mS/cm. A conductive polymer electrolytes were also prepared by polymerization in liquid EMIm(HF)nF leading to a composite poly(2-hydroxyethyl methacrylate)-EMIm(HF)nF. Recently, polymer electrolytes were prepared in the form of thin foils, by incorporating ionic liquids in a polymer matrix [13-15], Conductivities of polymer-IL or polymer-IL-solvent systems are collected in Table 4. [Pg.102]

In addition to the criticisms from Anderman, a further challenge to the application of SPEs comes from their interfacial contact with the electrode materials, which presents a far more severe problem to the ion transport than the bulk ion conduction does. In liquid electrolytes, the electrodes are well wetted and soaked, so that the electrode/electrolyte interface is well extended into the porosity structure of the electrode hence, the ion path is little affected by the tortuosity of the electrode materials. However, the solid nature of the polymer would make it impossible to fill these voids with SPEs that would have been accessible to the liquid electrolytes, even if the polymer film is cast on the electrode surface from a solution. Hence, the actual area of the interface could be close to the geometric area of the electrode, that is, only a fraction of the actual surface area. The high interfacial impedance frequently encountered in the electrochemical characterization of SPEs should originate at least partially from this reduced surface contact between electrode and electrolyte. Since the porous structure is present in both electrodes in a lithium ion cell, the effect of interfacial impedances associated with SPEs would become more pronounced as compared with the case of lithium cells in which only the cathode material is porous. [Pg.168]

Apparently, the formation of the microporous structure within the PVdF—HFP copolymer was of critical importance to the success of Bellcore technology, and the ion conductivity was proportional to the uptake of the liquid electrolyte. To achieve the desired porosity of PVdF film, Bellcore researchers prepared the initial polymer blend of PVdF with a plasticizer dibutylphthalate (DBP), which was then extracted by low boiling solvents after film formation. Thus, a pore-memory would be left by the voids that were previously occupied by DBP. However, due to the incomplete dissolution of such high-melting DBP during the extraction process, the pore-memory could never be restored at 100% efficiency. Beside the total volume of pores thus created by the plasticizer. [Pg.170]

The solid polymer electrolyte approach provides enhanced safety, but the poor ambient temperature conductivity excludes their use for battery applications. which require good ambient temperature performance. In contrast, the liquid lithium-ion technology provides better performance over a wider temperature range, but electrolyte leakage remains a constant risk. Midway between the solid polymer electrolyte and the liquid electrolyte is the hybrid polymer electrolyte concept leading to the so-called gel polymer lithium-ion batteries. Gel electrolyte is a two-component system, viz., a polymer matrix... [Pg.202]

Abraham et al. were the first ones to propose saturating commercially available microporous polyolefin separators (e.g., Celgard) with a solution of lithium salt in a photopolymerizable monomer and a nonvolatile electrolyte solvent. The resulting batteries exhibited a low discharge rate capability due to the significant occlusion of the pores with the polymer binder and the low ionic conductivity of this plasticized electrolyte system. Dasgupta and Ja-cobs patented several variants of the process for the fabrication of bonded-electrode lithium-ion batteries, in which a microporous separator and electrode were coated with a liquid electrolyte solution, such as ethylene—propylenediene (EPDM) copolymer, and then bonded under elevated temperature and pressure conditions. This method required that the whole cell assembling process be carried out under scrupulously anhydrous conditions, which made it very difficult and expensive. [Pg.203]

To address the zinc dendrite problem in nickel-zinc cells, eVionyx claims to have developed a proprietary membrane system that is nonporous, has very high ionic conductivity, is of low cost, and can block zinc dendrite penetration even in high concentrations of KOH. The polymeric membrane has an ionic species contained in a solution phase thereof. The ionic species behaves like a liquid electrolyte, while at the same time the polymer-based solid gel membrane provides a smooth impenetrable surface that allows the exchange of ions for both discharging and charging of the cell. [Pg.216]

In lithium polymer batteries, one electrode is lithium foil, or in some cases another electrically conducting material such as graphite, and the other is a reversible intercalation compound as in liquid electrolyte lithium batteries. Compounds used as intercalation electrodes include LiCo02 and VeOis. The cell developed in the Anglo-Danish project, which ran from 1979 to 1995, was... [Pg.294]


See other pages where Conducting polymers liquid electrolyte is mentioned: [Pg.441]    [Pg.364]    [Pg.6]    [Pg.439]    [Pg.499]    [Pg.513]    [Pg.513]    [Pg.514]    [Pg.611]    [Pg.46]    [Pg.285]    [Pg.331]    [Pg.139]    [Pg.21]    [Pg.477]    [Pg.80]    [Pg.2]    [Pg.3]    [Pg.111]    [Pg.158]    [Pg.157]    [Pg.25]    [Pg.124]    [Pg.168]    [Pg.169]    [Pg.202]    [Pg.295]    [Pg.290]    [Pg.540]    [Pg.562]    [Pg.567]    [Pg.575]    [Pg.2]   
See also in sourсe #XX -- [ Pg.416 , Pg.417 , Pg.418 , Pg.419 , Pg.420 , Pg.421 ]




SEARCH



Conductance electrolytes

Conductance, electrolytic

Conductance, electrolytical

Conductive liquids

Electrolytic conduction

Electrolytic conductivity

Liquid conductivity

Liquid electrolytes

Polymer electrolyte conducting

Polymer electrolytes conducting polymers

Polymer electrolytes liquids

© 2024 chempedia.info