Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly composites

Figure 23.39 Concentration of deuterated poly- compositions are the averages of the plateaus. Figure 23.39 Concentration of deuterated poly- compositions are the averages of the plateaus.
Maya Jacob John Rajesh, D., Anandjiwala. Recent Development in chemical modification and characterization of Natural F iber - Reinforced composites. J. Poly. Composite, 2008. [Pg.361]

Ghassemieli, E. and Nassehi, V., 2001a. Stiffness analysis of polymeric composites using the finite element method. Adv. Poly. Tech. 20, 42-57. [Pg.189]

Dichromated Resists. The first compositions widely used as photoresists combine a photosensitive dichromate salt (usually ammonium dichromate) with a water-soluble polymer of biologic origin such as gelatin, egg albumin (proteins), or gum arabic (a starch). Later, synthetic polymers such as poly(vinyl alcohol) also were used (11,12). Irradiation with uv light (X in the range of 360—380 nm using, for example, a carbon arc lamp) leads to photoinitiated oxidation of the polymer and reduction of dichromate to Ct(III). The photoinduced chemistry renders exposed areas insoluble in aqueous developing solutions. The photochemical mechanism of dichromate sensitization of PVA (summarized in Fig. 3) has been studied in detail (13). [Pg.115]

Most of the polymer s characteristics stem from its molecular stmcture, which like POE, promotes solubiUty in a variety of solvents in addition to water. It exhibits Newtonian rheology and is mechanically stable relative to other thermoplastics. It also forms miscible blends with a variety of other polymers. The water solubiUty and hot meltable characteristics promote adhesion in a number of appHcations. PEOX has been observed to promote adhesion comparable with PVP and PVA on aluminum foil, cellophane, nylon, poly(methyl methacrylate), and poly(ethylene terephthalate), and in composite systems improved tensile strength and Izod impact properties have been noted. [Pg.320]

It is evident that the area of water-soluble polymer covets a multitude of appHcations and encompasses a broad spectmm of compositions. Proteins (qv) and other biological materials ate coveted elsewhere in the Eniyclopedia. One of the products of this type, poly(aspartic acid), may be developed into interesting biodegradable commercial appHcations (70,71). [Pg.322]

The major use of vinylpyrrohdinone is as a monomer in manufacture of poly(vinylpyrrohdinone) (PVP) homopolymer and in various copolymers, where it frequendy imparts hydrophilic properties. When PVP was first produced, its principal use was as a blood plasma substitute and extender, a use no longer sanctioned. These polymers are used in pharmaceutical and cosmetic appHcations, soft contact lenses, and viscosity index improvers. The monomer serves as a component in radiation-cured polymer compositions, serving as a reactive diluent that reduces viscosity and increases cross-linking rates (see... [Pg.114]

Poly(ethylene terephthalate), the predominant commercial polyester, has been sold under trademark names including Dacron (Du Pont), Terylene (ICI), Eortrel (Wellman), Trevira (Hoechst-Celanese), and others (17). Other commercially produced homopolyester textile fiber compositions iaclude p oly (1,4-cyc1 oh exa n e- dim ethyl en e terephthalate) [24936-69-4] (Kodel II, Eastman), poly(butylene terephthalate) [26062-94-2] (PBT) (Trevira, Hoechst-Celanese), and poly(ethylene 4-oxyben2oate) [25248-22-0] (A-Tell, Unitika). Other polyester homopolymer fibers available for specialty uses iaclude polyglycoHde [26124-68-5] polypivalolactone [24937-51-7] and polylactide [26100-51-6],... [Pg.325]

Unlike most crystalline polymers, PVDF exhibits thermodynamic compatibiUty with other polymers (133). Blends of PVDF and poly(methyl methacrylate) (PMMA) are compatible over a wide range of blend composition (134,135). SoHd-state nmr studies showed that isotactic PMMA is more miscible with PVDF than atactic and syndiotactic PMMA (136). MiscibiUty of PVDF and poly(alkyl acrylates) depends on a specific interaction between PVDF and oxygen within the acrylate and the effect of this interaction is diminished as the hydrocarbon content of the ester is increased (137). Strong dipolar interactions are important to achieve miscibility with poly(vinyhdene fluoride) (138). PVDF blends are the object of many papers and patents specific blends of PVDF and acryflc copolymers have seen large commercial use. [Pg.387]

Poly(vinyl acetate). The dielectric and mechanical spectra of hybrids produced by mixing a poly(vinyl acetate)—THE solution with TEOS, followed by the addition of HCl have been investigated (45). Mixtures were made which were beheved to be 0, 5, 10, 15, and 20 wt % Si02, respectively. These composites were transparent and Eourier transform infrared spectroscopy (ftir) revealed hydrogen bonding between the siUcate network and carbonyl units of the poly(vinyl acetate) (PVAc). No shift in the T of the composites from that of the pure PVAc was observed. Similarly, the activation... [Pg.329]

In 1975, the synthesis of the first main-chain thermotropic polymers, three polyesters of 4,4 -dihydroxy-a,a -dimethylbenzalazine with 6, 8, and 10 methylene groups in the aHphatic chain, was reported (2). Shortly thereafter, at the Tennessee Eastman Co. thermotropic polyesters were synthesized by the acidolysis of poly(ethylene terephthalate) by/ -acetoxybenzoic acid (3). Copolymer compositions that contained 40—70 mol % of the oxybenzoyl unit formed anisotropic, turbid melts which were easily oriented. [Pg.64]

In addition to carbon and glass fibers ia composites, aramid and polyimide fibers are also used ia conjunction with epoxy resias. Safety requirements by the U.S. Federal Aeronautics Administration (FAA) have led to the development of flame- and heat-resistant seals and stmctural components ia civiUan aircraft cabias. Wool blend fabrics containing aramids, poly(phenylene sulfide), EDF, and other inherently flame-resistant fibers and fabrics containing only these highly heat- and flame-resistant fibers are the types most frequently used ia these appHcations. [Pg.72]

Diacyl peroxides are used in a broad spectmm of apphcations, including curing of unsaturated polyester resin compositions, cross-linking of elastomers, production of poly(vinyl chloride), polystyrene, and polyacrjlates, and in many nonpolymeric addition reactions. [Pg.223]

The newer open-ceU foams, based on polyimides (qv), polyben2imida2oles, polypyrones, polyureas, polyphenylquinoxalines, and phenoHc resins (qv), produce less smoke, are more fire resistant and can be used at higher temperatures. These materials are more expensive and used only for special appHcations including aircraft and marine vessels. Rigid poly(vinyl chloride) (PVC) foams are available in small quantities mainly for use in composite panels and piping appHcations (see Elame retardants Heat-RESISTANTPOLYA rs). [Pg.331]

Lead sesquioxide is used as an oxidation catalyst for carbon monoxide ia exhaust gases (44,45) (see Exhaust control), as a catalyst for the preparation of lactams (46) (see Antibiotics, P-lactams), ia the manufacture of high purity diamonds (47) (see Carbon, diamond-natural), ia fireproofing compositions for poly(ethylene terephthalate) plastics (48), ia radiation detectors for x-rays and nuclear particles (49), and ia vulcanization accelerators for neoprene mbber (50). [Pg.69]

Optics. Good optical properties and low thermal resistance make poly(methyl methacrylate) polymers well suited for use as plastic optical fibers. The manufacturing methods and optical properties of the fibers have been reviewed (124) (see Fiber optics). Methods for the preparation of Fresnel lenses and a Fresnel lens film have been reported (125,126). Compositions and methods for the industrial production of cast plastic eyeglass lenses are available (127). [Pg.271]


See other pages where Poly composites is mentioned: [Pg.242]    [Pg.243]    [Pg.62]    [Pg.65]    [Pg.242]    [Pg.243]    [Pg.62]    [Pg.65]    [Pg.214]    [Pg.152]    [Pg.1050]    [Pg.780]    [Pg.791]    [Pg.115]    [Pg.231]    [Pg.251]    [Pg.47]    [Pg.52]    [Pg.328]    [Pg.329]    [Pg.329]    [Pg.30]    [Pg.65]    [Pg.65]    [Pg.72]    [Pg.73]    [Pg.73]    [Pg.149]    [Pg.149]    [Pg.154]    [Pg.154]    [Pg.155]    [Pg.515]    [Pg.163]    [Pg.258]    [Pg.71]    [Pg.42]   
See also in sourсe #XX -- [ Pg.240 ]

See also in sourсe #XX -- [ Pg.285 ]

See also in sourсe #XX -- [ Pg.318 , Pg.320 ]

See also in sourсe #XX -- [ Pg.334 ]

See also in sourсe #XX -- [ Pg.90 , Pg.99 , Pg.100 , Pg.116 ]

See also in sourсe #XX -- [ Pg.43 , Pg.47 , Pg.48 ]




SEARCH



© 2024 chempedia.info