Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Component separators

The result of interest in the expressions shown in Eqs. (160) and (162) is that, although one has obtained expressions that include corrections to the nonrelativistic case, given in Eqs. (141) and (142), still both the continuity equations and the Hamilton-Jacobi equations involve each spinor component separately. To the present approximation, there is no mixing between the components. [Pg.164]

This part of our chapter has shown that the use of the two variables, moduli and phases, leads in a direct way to the derivation of the continuity and Hamilton-Jacobi equations for both scalar and spinor wave functions. For the latter case, we show that the differential equations for each spinor component are (in the nearly nomelativistic limit) approximately decoupled. Because of this decoupling (mutual independence) it appears that the reciprocal relations between phases and moduli derived in Section III hold to a good approximation for each spinor component separately, too. For velocities and electromagnetic field strengths that ate nomrally below the relativistic scale, the Berry phase obtained from the Schrddinger equation (for scalar fields) will not be altered by consideration of the Dirac equation. [Pg.168]

One application of the grand canonical Monte Carlo simulation method is in the study ol adsorption and transport of fluids through porous solids. Mixtures of gases or liquids ca separated by the selective adsorption of one component in an appropriate porous mate The efficacy of the separation depends to a large extent upon the ability of the materit adsorb one component in the mixture much more strongly than the other component, separation may be performed over a range of temperatures and so it is useful to be to predict the adsorption isotherms of the mixtures. [Pg.457]

Step 2. Extraction of the basic components. Extract the ethereal solution (Ej) with 15 ml. portions of 5 per cent, hydrochloric acid until all the basic components have been removed two or three portions of acid are usually sufficient. Preserve the residual ethereal solution (E2) for the separation of the neutral components. Wa.sh the combined acid extracts with 15-20 ml. of ether discard the ether extract as in Step 1. Make the acid extract alkaline with 10-20 per cent, sodium hydroxide solution if any basic component separates, extract it with ether, evaporate the ether, and characterise the residue. If a water-soluble base is also present, it may be recognised by its characteristic ammoniacal odour it may be isolated from the solution remaining after the separation of the insoluble base by ether extraction by distilling the aqueous solution as long as the distillate is alkahne to htmus. Identify the base with the aid of phenyl iso-thiocyanate (compare Section 111,123) or by other means. [Pg.1096]

In gas chromatography (GC) the sample, which may be a gas or liquid, is injected into a stream of an inert gaseous mobile phase (often called the carrier gas). The sample is carried through a packed or capillary column where the sample s components separate based on their ability to distribute themselves between the mobile and stationary phases. A schematic diagram of a typical gas chromatograph is shown in Figure 12.16. [Pg.563]

In capillary electrophoresis the conducting buffer is retained within a capillary tube whose inner diameter is typically 25-75 pm. Samples are injected into one end of the capillary tube. As the sample migrates through the capillary, its components separate and elute from the column at different times. The resulting electrophero-gram looks similar to the chromatograms obtained in GG or HPLG and provides... [Pg.597]

Sepa.ra.tlon, It maybe desirable to separate the feedstock into two or more components for different appHcations. Examples include separation of agricultural biomass into foodstuffs and residues that may serve as fuel or as a raw material for synfuel manufacture, separation of forest biomass into the darker bark-containing fractions and the pulpable components, separation of marine biomass to isolate various chemicals, and separation of urban... [Pg.16]

The majority of successful processes are those in which the entrainer and one of the components separate into two Hquid phases on cooling if direct recovery by distillation is not feasible. A further restriction in the selection of an azeotropic entrainer is that the boiling point of the entrainer is 10—40°C below that of the components. [Pg.202]

The nature of the stationary and mobile phases in a particular chromatographic experiment determines the efficacy of component separation in a... [Pg.104]

The mass spectrometer (ms) is a common adjunct to a chromatographic system (see Mass spectrometry). The combination of a gas chromatograph for component separation and a mass spectrometer (gc/ms) for detection and identification of the separated components is a powerful tool, particularly when the data are collected usiag an on-line data-handling system. QuaUtative information inherent ia the separation can be coupled with the identification of stmcture and relatively straightforward quantification of a mixture s components. [Pg.108]

The assay of ethyleneamines is usually done by gas chromatography. Compared to packed columns, in which severe tailing is often encountered due to the high polarity of the ethyleneamines, capillary columns provide better component separation and quantification. Typically, amines can be analyzed using fused siUca capillary columns with dimethyl silicones, substituted dimethyl silicones or PEG Compound 20 M as the stationary phase (150). [Pg.45]

The relative volatility, a, is a direct measure of the ease of separation by distillation. If a = 1, then component separation is impossible, because the hquid-and vapor-phase compositions are identical. Separation by distillation becomes easier as the value of the relative volatihty becomes increasingly greater than unity. Distillation separations having a values less than 1.2 ate relatively difficult those which have values above 2 are relatively easy. [Pg.156]

If the molecular species in the liquid tend to form complexes, the system will have negative deviations and activity coefficients less than unity, eg, the system chloroform—ethyl acetate. In a2eotropic and extractive distillation (see Distillation, azeotropic and extractive) and in Hquid-Hquid extraction, nonideal Hquid behavior is used to enhance component separation (see Extraction, liquid—liquid). An extensive discussion on the selection of nonideal addition agents is available (17). [Pg.157]

A third fundamental type of laboratory distillation, which is the most tedious to perform of the three types of laboratory distillations, is equilibrium-flash distillation (EFV), for which no standard test exists. The sample is heated in such a manner that the total vapor produced remains in contact with the total remaining liquid until the desired temperature is reached at a set pressure. The volume percent vaporized at these conditions is recorded. To determine the complete flash curve, a series of runs at a fixed pressure is conducted over a range of temperature sufficient to cover the range of vaporization from 0 to 100 percent. As seen in Fig. 13-84, the component separation achieved by an EFV distillation is much less than by the ASTM or TBP distillation tests. The initial and final EFN- points are the bubble point and the dew point respectively of the sample. If desired, EFN- curves can be established at a series of pressures. [Pg.1326]

Component Separation by Progressive Freezing When the distribution coefficient is less than I, the first solid which ciystaUizes contains less solute than the liquid from which it was formed. As the frac tion which is frozen increases, the concentration of the impurity in the remaining liquid is increased and hence the concentration of impurity in the sohd phase increases (for k < 1). The concentration gradient is reversed for k > 1. Consequently, in the absence of diffusion in the solid phase a concentration gradient is estabhshed in the frozen ingot. [Pg.1990]

Manual Component Separation The manual separation of solid-waste components can be accomplished at the source where solid wastes are generated, at a transfer station, at a centralized processing station, or at the disposal site. Manual sorting at the source of generation is the most positive way to achieve the recoveiy and reuse of materials. The number and types of components salvaged or sorted (e.g., cardboard and high-quality paper, metals, and wood) depend on the location, the opportunities for recycling, and the resale market. There has been an evolution in the solid waste indus-tiy to combine manual and automatic separation techniques to reduce overall costs and produce a cleaner product, especially for recyclable materials. [Pg.2241]

Mechanical Component Separation Component separation is a necessaiy operation in the recovery of resources from sohd wastes and in instances when energy and conversion products are to be recovered from processed wastes. Mechanical separation techniques that have been used are reported in Table 25-61. [Pg.2242]

Calculating the resistance of each current-carrying component separately is a very cumbersome and lengthy procedure, in addition to being not very accurate due to the large number of approximations. Some of the joints and components may still have been omitted from these calculations. The easier and more often recommended procedure is to measure the resistance between the extreme ends of each feeder in its ON condition by an Ohm-meter. This resistance will also include the contact resistance of each terminal and joint. [Pg.425]

Since the amount of fissile material in the fuel assemblies is only about 3 percent of the uranium present, it is obvious that there cannot be a large amount of radioactive material in the SNF after fission. The neutron flux produces some newly radioactive material in the form of uranium and plutonium isotopes. The amount of this other newly radioactive material is small compared to the volume of the fuel assembly. These facts prompt some to argue that SNF should be chemically processed and the various components separated into nonradioac-tive material, material that will be radioactive for a long time, and material that could be refabricated into new reactor fuel. Reprocessing the fuel to isolate the plutonium is seen as a reason not to proceed with this technology in the United States. [Pg.884]

Then if any two phases are separately in equilibrium with a third phase, they are also in equilibrium when placed in contact, so that if any one phase (e.y., the vapour) is taken as a test-phase, and the other phases are separately in equilibrium with this, the whole system will be in equilibrium. Under the conditions imposed, it is sufficient that the vapour pressure, or osmotic pressure, of each component has the same value at all the interfaces, for we may consider each component separately by intruding across the interface a diaphragm permeable to that compo- -nent alone. Then if the vapour, or osmotic pressures, are not equal at the third interface to their values at the first and second interfaces, i.e., at the interfaces on the test-phase, we could carry out a reversible isothermal cycle in which any quantity of a specified component is taken from the test-phase to the phase of higher pressure, then across the interface to the phase of lower pressure, and then back to the test-phase. In this cycle, work would be obtained, which however is impossible. Hence the two phases which are separately in equilibrium with the test-phase are also in equilibrium with each other. This may be called the Law of the Mutual Compatibility of Phases (cf. 106). [Pg.388]

NGc, Nitrosamines, Nitramines, etc. In this technique, microgram quantities of a sample are added to a column packed with an absorbing medium or phase. Over this is maintained a flow of mobile phase (gas or liq). The sample components separate because of their relative mobility in the absorbing phase, and thus leave the column at different times (See Vol 1,... [Pg.300]

Because of the complexity of the AOS system, the authors of Ref. 72 state that the determination of the activation energy for thermal degradation might present grave difficulties. They decided to study each of the AOS components separately whereby each was observed to follow a complicated thermal degradation path. [Pg.416]

Equation (17) shows the relationship between electrode potentials and electronic energy. The electrode potential is measured by the electron work function of the metal, modified by the contact with the solution (solvent). This establishes a straightforward link, not only conceptually but also experimentally, between electrochemical and UHV situations.6,32 In many cases, electrochemical interfaces are synthesized in UHV conditions55-58 by adding the various components separately, with the aim possibly of disentangling the different contributions. While the situation can be qualitatively reproduced, it has been shown above that there may be quantitative differences that are due to the actual stmctural details. [Pg.18]

In the case of ionic adsorbates, the variation in WS50is normally unable to provide a clue to the molecular structure of the solvent since free charge contributions outweigh dipolar effects. In this case UHV experiments are able to give a much better resolved molecular picture of the situation. The interface is synthesized by adsorbing ions first and solvent molecules afterward. The variation of work function thus provides evidence for the effect of the two components separately and it is possible to see the different orientation of water molecules around an adsorbed ion.58,86,87 Examples are provided in Fig. 6. [Pg.25]

This is that, once we have separated the nuclear wave function into iPe and T o using Eq. (6), we are free to model the dynamics of each component separately using classical trajectories, secure in the knowledge that we have removed the... [Pg.27]

Mobile phases are of a greater variety than the restricted number of stationary phases. Many solvents and their mixtures are used as a mobile phase. The possibility of slight modification of solvent proportions in a mixmre permits the increase of mobile phase number and, thus, different results in the component separation of the analyzed sample. That is why the optimum mobile phase selection becomes one of the basic operations for the success of the analysis. [Pg.65]

Chemical Studies of Plant Extract Components (Separations on Silica Gel)... [Pg.228]


See other pages where Component separators is mentioned: [Pg.109]    [Pg.1098]    [Pg.53]    [Pg.326]    [Pg.160]    [Pg.1316]    [Pg.1424]    [Pg.1988]    [Pg.1988]    [Pg.1991]    [Pg.2243]    [Pg.2243]    [Pg.1]    [Pg.168]    [Pg.165]    [Pg.11]    [Pg.97]    [Pg.180]    [Pg.14]    [Pg.188]    [Pg.71]    [Pg.672]    [Pg.59]    [Pg.651]   
See also in sourсe #XX -- [ Pg.314 ]




SEARCH



Balances in Multi-Component Separation

Basic components separators

Characteristics of Multi-Component Separation

Component Separation Conventional Distillation

Component separators flooding

Components and Separable Algebras

Components, LABs separators

Comprehensive Two-Dimensional Separations with an Electrodriven Component

Electrolyte compositions, separation components

Foam separation of surfactant components from mixtures

Four-component mixtures separability

Freezing, progressive component separation

High-Molecular Components Separation

If Method Is Being Developed for Separation of Active and Unknown Component

Independent component analysis separating matrix

Mechanical separation of carpet components

Membrane separation processes component transport

Mixtures separating into components

Multi-component separation

Phase separation, multi-component mixture

Phase-Separating Multi-Component Mixtures

Physical change mixture components separated

Physical methods with separation of components

Polymers, phase separated component

Sample components, separation

Separability of Energy Components

Separate battery components, weight

Separation components

Separation components

Separation of Byproduct Components

Separation of components

Separation of the Coating Material into Individual Components

Separation of the components

Separative capacity three-component

Terms Referring to Sample Component Separation

Three-component isotope separation

Three-component mixtures separability

Volatile components, separating

Ways to Separate the Components of Mixtures

Zone melting component separation

© 2024 chempedia.info