Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalyses complex formation

Key words. Calixarenes, calixarene oxyanions, conformation, complex formation, catalysis. [Pg.61]

Complex formation, catalysis, electrochemical reaction, chemi- or physisorption, ion exchange, membrane transport, antigen- or antibody binding, binding on immobilized receptor... [Pg.50]

As a result the research emphasis in this field focused on efforts to design experiments in which it might be possible to determine to which one of the foregoing three rate equations the observed second-order rate coefficient actually corresponded. More specifically, the objective was to observe one and the same system first under conditions in which complex decomposition (fcp) was rate-determining and then under conditions in which complex formation (kF) was ratedetermining. A system in which either formation or decomposition was subject to some form of catalysis was thus indicated. In displacements with primary and secondary amines the transformation of reactants to products necessarily involves the transfer of a proton at some stage of the reaction. Such reactions are potential-... [Pg.409]

Cyclodextrins can solubilize hydrophobic molecules in aqueous media through complex formation (5-8). A nonpolar species prefers the protective environment of the CDx cavity to the hulk aqueous solvent. In addition, cyclodextrins create a degree of structural rigidity and molecular organization for the included species. As a result of these characteristics, these macrocycles are used in studies of fluorescence and phosphorescence enhancement (9-11), stereoselective catalysis (.12,13), and reverse-phase chromatographic separations of structurally similar molecules (14,15). These same complexing abilities make cyclodextrins useful in solvent extraction. [Pg.170]

The cationic complex [CpFe(CO)2(THF)]BF4 (23) can also catalyze the proton reduction from trichloroacetic acid by formation of Fe-hydride species and may be considered as a bioinspired model of hydrogenases Fe-H Complexes in Catalysis ) [44]. This catalyst shows a low overvoltage (350 mV) for H2 evolution, but it is inactivated by dimerization to [CpFe(CO)2l2-... [Pg.151]

In this chapter we have seen that enzymatic catalysis is initiated by the reversible interactions of a substrate molecule with the active site of the enzyme to form a non-covalent binary complex. The chemical transformation of the substrate to the product molecule occurs within the context of the enzyme active site subsequent to initial complex formation. We saw that the enormous rate enhancements for enzyme-catalyzed reactions are the result of specific mechanisms that enzymes use to achieve large reductions in the energy of activation associated with attainment of the reaction transition state structure. Stabilization of the reaction transition state in the context of the enzymatic reaction is the key contributor to both enzymatic rate enhancement and substrate specificity. We described several chemical strategies by which enzymes achieve this transition state stabilization. We also saw in this chapter that enzyme reactions are most commonly studied by following the kinetics of these reactions under steady state conditions. We defined three kinetic constants—kai KM, and kcJKM—that can be used to define the efficiency of enzymatic catalysis, and each reports on different portions of the enzymatic reaction pathway. Perturbations... [Pg.46]

An inhibitor that binds exclusively to the free enzyme (i.e., for which a = °°) is said to be competitive because the binding of the inhibitor and the substrate to the enzyme are mutually exclusive hence these inhibitors compete with the substrate for the pool of free enzyme molecules. Referring back to the relationships between the steady state kinetic constants and the steps in catalysis (Figure 2.8), one would expect inhibitors that conform to this mechanism to affect the apparent value of KM (which relates to formation of the enzyme-substrate complex) and VmJKM, but not the value of Vmax (which relates to the chemical steps subsequent to ES complex formation). The presence of a competitive inhibitor thus influences the steady state velocity equation as described by Equation (3.1) ... [Pg.51]

An inhibitor that binds exclusively to the ES complex, or a subsequent species, with little or no affinity for the free enzyme is referred to as uncompetitive. Inhibitors of this modality require the prior formation of the ES complex for binding and inhibition. Hence these inhibitors affect the steps in catalysis subsequent to initial substrate binding that is, they affect the ES —> ES1 step. One might then expect that these inhibitors would exclusively affect the apparent value of Vm and not influence the value of KM. This, however, is incorrect. Recall, as illustrated in Figure 3.1, that the formation of the ESI ternary complex represents a thermodynamic cycle between the ES, El, and ESI states. Hence the augmentation of the affinity of an uncompetitive inhibitor that accompanies ES complex formation must be balanced by an equal augmentation of substrate affinity for the El complex. The result of this is that the apparent values of both Vmax and Ku decrease with increasing concentrations of an uncompetitive inhibitor (Table 3.3). The velocity equation for uncompetitive inhibition is as follows ... [Pg.67]

Ito and co-workers observed the formation of zinc bound alkyl carbonates on reaction of carbon dioxide with tetraaza macrocycle zinc complexes in alcohol solvents.456 This reversible reaction was studied by NMR and IR, and proceeds by initial attack of a metal-bound alkoxide species. The metal-bound alkyl carbonate species can be converted into dialkyl carbonate. Spectroscopic studies suggested that some complexes showed monodentate alkyl carbonates, and varying the macrocycle gave a bidentate or bridging carbonate. Darensbourg isolated arylcarbonate compounds from zinc alkoxides as a by-product from work on polycarbonate formation catalysis.343... [Pg.1184]

The conclusions of the preceding discussion can be briefly summarized as follows. The formation of inclusion complexes in both the crystalline state as well as in solution has been convincingly demonstrated by spectral and kinetic techniques. Whereas the crystalline complexes are seldom stoichiometric, the solution complexes are usually formed in a 1 1 ratio. Although the geometries within the inclusion complexes cannot be accurately defined, it is reasonable to assume that an organic substrate is included in such a way to allow maximum contact of the hydrophobic portion of the substrate with the apolar cycloamylose cavity. The hydrophilic portion of the substrate, on the other hand, probably remains near the surface of the complex to allow maximum contact with the solvent and the cycloamylose hydroxyl groups. The implications of inclusion complex formation for specificity and catalysis will be elucidated in subsequent sections of this article. [Pg.218]

Inclusion complex formation with fluorescent NBD-guests corroborated internal hydrophobicity of /3-barrel hosts and potential for intratoroidal catalysis <2002CH18>. [Pg.387]

Metal ion catalyzed autoxidation reactions of glutathione were found to be very similar to that of cysteine (76,77). In a systematic study, catalytic activity was found with Cu(II), Fe(II) and to a much lesser extent with Cu(I) and Ni(I). The reaction produces hydrogen peroxide, the amount of which strongly depends on the presence of various chelating molecules. It was noted that the catalysis requires some sort of complex formation between the catalyst and substrate. The formation of a radical intermediate was not ruled out, but a radical initiated chain mechanism was not necessary for the interpretation of the results (76). [Pg.431]

Suspecting that there may be an ionisation without complex formation, we then did a conductimetric study on TiCl4 in CH2C12 and EtCl [48]. This gave the useful result that there was no evidence for an ionisation yielding R+ and MtX"n+1, and it thus made solvent co-catalysis by the ionisation of the solvent very unlikely. A further useful outcome from these conductimetric studies was the realisation that the observed rectilinear dependence of the conductivity, K, on the concentration of TiCl4 could only be explained reasonably as due to the self-ionisation of TiCl4, for which reaction (11) seemed most likely ... [Pg.31]

As the first committed step in the biosynthesis of AMP from IMP, AMPSase plays a central role in de novo purine nucleotide biosynthesis. A 6-phosphoryl-IMP intermediate appears to be formed during catalysis, and kinetic studies of E. coli AMPSase demonstrated that the substrates bind to the enzyme active sites randomly. With mammalian AMPSase, aspartate exhibits preferred binding to the E GTPTMP complex rather than to the free enzyme. Other kinetic data support the inference that Mg-aspartate complex formation occurs within the adenylosuccinate synthetase active site and that such a... [Pg.36]

With these caveats in mind concerning possible complex formation, we examine potential oxidants for S(IV) in solution. These include 02, 03, H202, free radicals such as OH and H02, and oxides of nitrogen (e.g., NO, N02, HONO, and HN03). Metal catalysis may play a role in some of these reactions. [Pg.305]

An important feature of the cyclodextrins is that they can also accelerate chemical reactions, and therefore serve as models for the catalytic as well as the binding properties of enzymes. The rapid reaction is not catalysis, since the dextrin enters reaction but is not regenerated presumably it arises from approximation, where complex formation forces the substrate and the cyclodextrin into intimate contact. In particular, cyclodextrins can increase the rate of cleavage of phenyl pyrophosphate by factors of as much as 100 (Cramer, 1961). More recent work has improved upon this early example. [Pg.29]

Karlin, K. D. Zuberbuhler, A. D. Formation, structure, and reactivity of copper dioxygen complexes, Bioinorganic Catalysis , 2nd edn. (Revised and Expanded) Eds. Reedijk, J. Bouwman, E. Marcel Dekker New York, 1999, pp. 469-534. Fukuzumi, S. Imahori, H. Biomimetic electron-transfer chemistry of porphyrins and metalloporphyrins, Electron Transfer in Chemistry , Vol. 2 Ed. Balzani, V. Wiley-VCH Verlag GmbH Weinheim, 2001, pp. 927-975. [Pg.53]

These discussions will embrace homogeneous solutions of polymer-metal complexes. Of course one of the important advantages offered by the use of a polymer ligand, especially a crosslinked polymer ligand, in catalysis is the insolubilization of the attached complexes the insolubility of the polymer catalyst makes it very easy to separate from the other components of the reaction mixture. Several polymer-metal complexes have been used for this purpose, although such applications are not covered in this article. The aim here is (1) to characterize polymer-metal complexes and their behavior in such simple but important elementary reactions as complex formation, ligand substitution, and electron transfer, and (2) to describe their catalytic activity. [Pg.6]

In listing the ways in which metal ions may promote organic reactions, the requirement that the metal ion be suitably positioned within the substrate molecule was emphasized. Specific complexation or chelation of the metal ion with the substrate appears to be an absolute requirement of metal ion catalysis. In many cases chelation appears to be the rule, which usually means that the substrate must contain a donor atom in addition to the reactive center of the molecule with which the metal ion also complexes, or must contain two donor atoms in addition to the reactive center. Many attempts have been made to correlate the effectiveness of catalysis by a series of metal ions with the relative formation constants of the complexes. Such correlations have been successful in a number of reactions, but unsuccessful in others. In the successful correlations the complex chosen for the correlation closely approximates the transition state of the reaction. This indicates that the metal ion complex must stabilize the transition state of the reaction in order to assist the reaction effectively, and that metal ion complex formation in the ground state can have an effect exactly opposite to that of catalysis, since in such a case the ground state becomes stabilized. [Pg.39]


See other pages where Catalyses complex formation is mentioned: [Pg.3]    [Pg.364]    [Pg.312]    [Pg.444]    [Pg.520]    [Pg.303]    [Pg.137]    [Pg.231]    [Pg.5]    [Pg.168]    [Pg.480]    [Pg.212]    [Pg.156]    [Pg.1279]    [Pg.1281]    [Pg.29]    [Pg.201]    [Pg.227]    [Pg.210]    [Pg.299]    [Pg.255]    [Pg.156]    [Pg.313]    [Pg.361]    [Pg.151]    [Pg.165]    [Pg.177]    [Pg.240]    [Pg.297]    [Pg.91]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



C-B Bond Formation by Pincer Complexes Including Asymmetric Catalysis

Catalysis enzyme-substrate complex formation

Complex catalysis

© 2024 chempedia.info