Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Combustion, trace analysis

In Micro Dumas combustion (CHN analysis) the sample is vaporised and carried by a stream of CO2 over nickel oxide at 1000 °C to oxidise the sample to CO2, H2O and N2. Nickel reduces nitrogen oxides in the heated combustion tube. Carbon monoxide, formed by reduction of CO2 by nickel, is oxidised by passage through hopcalite at 110°C. Traces of... [Pg.595]

Miyake, Y, Yamashita, N., So, M. K., Rostkowski, P, Taniyasu, S., Lam, P. K. S., et al. Trace analysis of total fluorine in human blood using combustion ion chromatography for fluorine a mass balance approach for the determination of known and unknown organofluorine compounds. J. Chromatogr. A, 1154 214-221 (2007). [Pg.64]

Trace analysis of organic compounds is primarily used in the detection and determination of harmful substances of natural origin (e.g., mycotoxins) as well as those that are the undesirable result of human activity, especially industrial and agricultural. Of the latter, the subject of interest could be either intentionally produced compounds (pesticides, flame retardants, chemical weapons, etc.) or unwanted impurities released in an uncontrolled manner in technological processes or from improper combustion of fuels and waste materials [1,2]. [Pg.155]

The concentration of metals that are detrimental to catalysts added can vary between 20.0 ppm for Fe to 100 ppm for Ni and lOOOppm for V. The presence of these metals necessitates the need for analysis of these metals to determine their concentrations prior to the cracking process. The best method to analyse these oil samples needs to be rapid and accurate. Careful selection of the method either from experience or by trial and error may be applied depending on the metal and the concentration. Sample dissolution in a solvent or solvent mixture is considered the easiest but may not be suitable for low limits of detection. Destructive sample preparation methods, i.e. oxygen bomb combustion, microwave acid digestion followed by pre-concentrating may be required for trace analysis and/or with the aid of a hyphenated system, e.g. ultrasonic nebuliser. Samples prepared by destmctive methods are dissolved in aqueous solutions that have very low matrix and spectral interferences. [Pg.143]

Purity of the carrier gas is very important in modern GC equipment designated for trace analysis. Consequently, it is essential that the gas purifiers, such as the traps containing various adsorbents, be inserted in the gas tine before the injection port. The same requirement usually applies for purification of the combustion gases for the flame ionization detector. The role of these adsorbent traps is to remove even the trace quantities of water, oxygen and organic impurities present in commercial gas cylinders, and thus minimize both the system contamination and chemical alteration of an injected sample. [Pg.48]

Procedures based on separation techniques such as HPLC and IC have been developed for single element analysis for the following two reasons. The first reason is to remove interferents in complicated sample matrices that can give rise to incorrect results, in particular for trace analysis in samples with a high organic content, such as the determination of total iodine in egg products. The second reason is to differentiate the total and free forms of a specific element, such as the determination of the free iodide ion and bounded iodine in food additives. The free iodide ion is determined by direct sample injection into the IC column, whereas the total iodine content is determined after oxygen flask combustion. Thus, both the free and bounded forms of iodine in food samples can be determined. [Pg.4260]

Limitations Adjustment of the combustion gases important for reproducibility and selectivity. In sulfur mode, quenching effect is possible because of too high hydrocarbon matrix (double flame necessary). Sensitivity in sulfur mode is not always sufficient for trace analysis. [Pg.204]

Chemical Composition. Chemical compositional data iaclude proximate and ultimate analyses, measures of aromaticity and reactivity, elemental composition of ash, and trace metal compositions of fuel and ash. All of these characteristics impact the combustion processes associated with wastes as fuels. Table 4 presents an analysis of a variety of wood-waste fuels these energy sources have modest energy contents. [Pg.54]

The side-chain chlorine contents of benzyl chloride, benzal chloride, and benzotrichlorides are determined by hydrolysis with methanolic sodium hydroxide followed by titration with silver nitrate. Total chlorine determination, including ring chlorine, is made by standard combustion methods (55). Several procedures for the gas chromatographic analysis of chlorotoluene mixtures have been described (56,57). Proton and nuclear magnetic resonance shifts, characteristic iafrared absorption bands, and principal mass spectral peaks have been summarized including sources of reference spectra (58). Procedures for measuring trace benzyl chloride ia air (59) and ia water (60) have been described. [Pg.61]

As discussed in Chapter 1, a portion of the feed is converted to coke in the reactor. This coke is carried into the regenerator with the spent catalyst. The combustion of the coke produces H2O, CO, CO, SO2, and traces of NOx. To determine coke yield, the amount of dry air to the regenerator and the analysis of flue gas are needed. It is essential to have an accurate analysis of the flue gas. The hydrogen content of coke relates to the amount of hydrocarbon vapors carried over with the spent catalyst into the regenerator, and is an indication of the rcactor-stripper performance. Example 5-1 shows a step-by-step cal culation of the coke yield. [Pg.149]

Principles and Characteristics Combustion analysis is used primarily to determine C, H, N, O, S, P, and halogens in a variety of organic and inorganic materials (gas, liquid or solid) at trace to per cent level, e.g. for the determination of organic-bound halogens in epoxy moulding resins, halogenated hydrocarbons, brominated resins, phosphorous in flame-retardant materials, etc. Sample quantities are dependent upon the concentration level of the analyte. A precise assay can usually be obtained with a few mg of material. Combustions are performed under controlled conditions, usually in the presence of catalysts. Oxidative combustions are most common. The element of interest is converted into a reaction product, which is then determined by techniques such as GC, IC, ion-selective electrode, titrime-try, or colorimetric measurement. Various combustion techniques are commonly used. [Pg.595]

Applications Basic methods for the determination of halogens in polymers are fusion with sodium carbonate (followed by determination of the sodium halide), oxygen flask combustion and XRF. Crompton [21] has reported fusion with sodium bicarbonate for the determination of traces of chlorine in PE (down to 5 ppm), fusion with sodium bisulfate for the analysis of titanium, iron and aluminium in low-pressure polyolefins (at 1 ppm level), and fusion with sodium peroxide for the complexometric determination using EDTA of traces of bromine in PS (down to 100ppm). Determination of halogens in plastics by ICP-MS can be achieved using a carbonate fusion procedure, but this will result in poor recoveries for a number of elements [88]. A sodium peroxide fusion-titration procedure is capable of determining total sulfur in polymers in amounts down to 500 ppm with an accuracy of 5% [89]. [Pg.605]

CF-IRMS provides reliable data on micromoles or even nanomoles of sample without the need for cryogenic concentration because more of the sample enters the ion source than in DI-IRMS. CF-IRMS instruments accept solid, liquid, or gaseous samples such as leaves, soil, algae, or soil gas, and process 100-125 samples per day. Automated sample preparation and analysis takes 3-10 min per sample. The performance of CF-IRMS systems is largely determined by the sample preparation technology. A variety of inlet and preparation systems is available, including GC combustion (GC/C), elemental analyzer, trace gas pre-concentrator and other. The novel... [Pg.166]

Infrared (IR) spectroscopy offers many unique advantages for measurements within an industrial environment, whether they are for environmental or for production-based applications. Historically, the technique has been used for a broad range of applications ranging from the composition of gas and/or liquid mixtures to the analysis of trace components for gas purity or environmental analysis. The instrumentation used ranges in complexity from simple filter-based photometers to optomechanically complicated devices, such as Fourier transform infrared (FTIR) spectrometers. Simple nondispersive infrared (NDIR) insttuments are in common use for measurements that feature well-defined methods of analysis, such as the analysis of combustion gases for carbon oxides and hydrocarbons. For more complex measurements it is normally necessary to obtain a greater amount of spectral information, and so either Ml-spectrum or multiple wavelength analyzers are required. [Pg.157]

Combustion gases Regulatory applications. Fire hazard assessment Composition monitoring - gas Trace gas and vapor analysis... [Pg.190]

In a number of studies, the elemental composition of aerosol particles has been related to their source. Schroeder and co-workers (1987) review the sources, sinks, analysis, deposition, chemical forms, and global cycles of various trace elements. Because the relative amounts of trace elements vary for coal compared to oil-fueled power plants, for example, it has been suggested that certain elements or ratios of elements may serve as tracers for various sources (e.g., see Gordon, 1988 and Rahn and Lowenthal, 1984). Thus V and Ni are indicative of oil combustion, and elevated concentrations of elements such as As and Se are usually... [Pg.386]


See other pages where Combustion, trace analysis is mentioned: [Pg.81]    [Pg.494]    [Pg.433]    [Pg.413]    [Pg.346]    [Pg.159]    [Pg.159]    [Pg.458]    [Pg.633]    [Pg.1299]    [Pg.698]    [Pg.378]    [Pg.62]    [Pg.30]    [Pg.322]    [Pg.421]    [Pg.468]    [Pg.119]    [Pg.263]    [Pg.596]    [Pg.599]    [Pg.599]    [Pg.600]    [Pg.190]    [Pg.384]    [Pg.290]    [Pg.445]    [Pg.252]    [Pg.277]    [Pg.621]    [Pg.298]    [Pg.304]    [Pg.468]   
See also in sourсe #XX -- [ Pg.87 ]




SEARCH



Combustion analysis

Trace analysis

© 2024 chempedia.info