Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Columns and detectors

Initially packed columns were used, but capillary columns are most frequently used today. A variety of polar and non-polar column phases have been used to determine VOCs depending on the particular compound(s) analyzed. Numerous examples were summarized by Wille and Lambert.5 Similarly, a range of detection devices have been utilized. Flame ionization detection (FID) and mass spectrometry (MS) in the selected-ion monitoring mode (SIM) are most frequently used, but other techniques include electron-capture detection (ECD) and Fourier transform infrared (FTIR) detection. [Pg.130]


This type of analysis requires several chromatographic columns and detectors. Hydrocarbons are measured with the aid of a flame ionization detector FID, while the other gases are analyzed using a katharometer. A large number of combinations of columns is possible considering the commutations between columns and, potentially, backflushing of the carrier gas. As an example, the hydrocarbons can be separated by a column packed with silicone or alumina while O2, N2 and CO will require a molecular sieve column. H2S is a special case because this gas is fixed irreversibly on a number of chromatographic supports. Its separation can be achieved on certain kinds of supports such as Porapak which are styrene-divinylbenzene copolymers. This type of phase is also used to analyze CO2 and water. [Pg.71]

The first set of experiments describes the application of gas chromatography. These experiments encompass a variety of different types of samples, columns, and detectors. Most experiments maybe easily modified to use available equipment and detectors. [Pg.610]

Another aspect of cost reduction would be solvent economy. The need to preferentially select inexpensive solvents and employ the minimum amount of solvent per analysis would be the third performance criteria. Finally, to conserve sample and to have the capability of determining trace contaminants, the fourth criterion would be that the combination of column and detector should provide the maximum possible mass sensitivity and, thus, the minimum amount of sample. The performance criteria are summarized in Table 1. Certain operating limits are inherent in any analytical instrument and these limits will vary with the purpose for which the instrument was designed. For example, the preparative chromatograph will have very different operating characteristics from those of the analytical chromatograph. [Pg.362]

Step 2) Introduce heart-cut to the analytical column and detector. At the predetermined time interval, which was previously calculated by eluting analyte standards without the analytical column, i.e. the onset of the heart-cut, valve B is closed to divert the precolumn effluent to the analytical column. [Pg.125]

Post-column on-line derivatisation is carried out in a special reactor situated between the column and detector. A feature of this technique is that the derivatisation reaction need not go to completion provided it can be made reproducible. The reaction, however, needs to be fairly rapid at moderate temperatures and there should be no detector response to any excess reagent present. Clearly an advantage of post-column derivatisation is that ideally the separation and detection processes can be optimised separately. A problem which may arise, however, is that the most suitable eluant for the chromatographic separation rarely provides an ideal reaction medium for derivatisation this is particularly true for electrochemical detectors which operate correctly only within a limited range of pH, ionic strength and aqueous solvent composition. [Pg.228]

The combustion of mixtures of hydrogen and air produces very few ions so that with only the carrier gas and hydrogen burning an essentially constant signal is obtained. When, however, carbon-containing compounds are present ionisation occurs and there is a large increase in the electrical conductivity of the flame. Because the sample is destroyed in the flame a stream-splitting device is employed when further examination of the eluate is necessary this device is inserted between the column and detector and allows the bulk of the sample to by-pass the detector. [Pg.242]

Quantitative analysis using the internal standard method. The height and area of chromatographic peaks are affected not only by the amount of sample but also by fluctuations of the carrier gas flow rate, the column and detector temperatures, etc., i.e. by variations of those factors which influence the sensitivity and response of the detector. The effect of such variations can be eliminated by use of the internal standard method in which a known amount of a reference substance is added to the sample to be analysed before injection into the column. The requirements for an effective internal standard (Section 4.5) may be summarised as follows ... [Pg.247]

The GC/FID conditions were as follows column, 1.5% OV-17 (2 m x 3-mm i.d.) glass column N2 carrier gas flow rate, 45mLmin temperature of injection port, column and detector, 240,235 and 235 °C, respectively. The recoveries of these amino derivatives with fortification level ranging from 0.5 to lO.Omgkg" were 62-101% for chlornitrofen, 62-101% for nitrofen and 58-101% for chlomethoxyfen, and satisfactory recoveries from soil were obtained at high concentrations, but the recoveries at lower concentration averaged about 66% for the least recovered compound. Interference from other substances in the soil extracts derived from the acetylation reaction was negligible. [Pg.461]

Column and detector properties determine the minimum amount of a component that can be reliably distinguished from the background noise. If we arbitrarily select a signal to noise ratio of 4 as the minimum value for the confident determination of a peak in a chromatogram then for a mass sensitive detector the minimum detectable amount is given by... [Pg.29]

Al.l Overview of developments in laboratory practices, instrumentation, columns, and detectors... [Pg.57]

Only when the very contamination-sensitive electron-capture detector is used is it necessary to provide separate gas streams, one for the reaction and stripping part of the system, the other for the carrier gas stream of the column and detector. Otherwise, the same gas stream can be used to strip the hydrides from solution and carry them into the detector, which greatly simplifies the apparatus. This is of considerable significance, as each additional surface and joint in the apparatus increases the possibility of irreversible adsorption of the sensitive hydrides, and thus is a potential contributor to analytical error. The... [Pg.254]

There are several types of RI detector, all of which monitor the difference between a reference stream of mobile phase and the column effluent. Any solute whose presence alters the refractive index of the pure solvent will be detected, but sensitivity is directly proportional to the difference between the refractive index of the solute and that of the solvent. At best they are two orders of magnitude less sensitive than UV/visible detectors. All RI detectors are highly temperature-sensitive, and some designs incorporate heat exchangers between column and detector to optimize performance. They cannot be used for gradient elution because of the difficulty in matching the refractive indices of reference and sample streams. [Pg.132]

The OFRR offers an excellent solution to implement pGC. It has a circular cross section by design, which is well compatible with all the GC-related equipments that are currently in use. Moreover, OFRR achieves dual use as the separation column as well as the detection body, which is in sharp contrast with other pGC systems having separate column and detector. By placing an optical fiber taper or a waveguide in contact with the OFRR, we are able to achieve multipoint real-time on-column detection, which greatly simplifies the pGC system. [Pg.136]

Again, helium degassing as described above is an appropriate way to remove oxygen, especially when combined with heating (40 to 50°C) of the mobile phase. Special care must be taken that oxygen cannot diffuse back into the mobile phase replace PTFE tubing by steel tubing between mobile phase container and pump, and between column and detector. [Pg.49]

In soil analysis, HPLC is used much like GC in that soil is extracted and the extract, after suitable cleanup and concentration, is analyzed. One major difference between them is that HPLC does not require the components to be in the gaseous phase. They must, however, be soluble in an eluent that is compatible with the column and detector being used. A second difference is that both a syringe and an injector are used to move the sample into the eluent and onto the column. Detection is commonly by UV absorption, although RI, conductivity, and mass spectrometry are also commonly used. Conductivity or other electrical detection methods are used when analysis of ionic species in soil is carried out [3,78],... [Pg.282]

Examine the HPLC instrument to which you are assigned. Find the inlet line to the pump and place the free end of this line in the reservoir containing the mobile phase with the 90/10 composition. Trace the path of the mobile phase from the reservoir, through the pump, injection valve, column, and detector, to the waste container so that you identify and recognize all components of the flow path. Turn on the pump and detector and begin pumping the mobile phase at a rate... [Pg.386]

Abstract Gas chromatography (GC) is commonly used for the analysis of a myriad of compounds in neurochemistry. In this chapter various aspects of GG, including inlets, columns and detectors are discussed. Appropriate sample preparation, including extraction and derivatization techniques are also covered. In the latter portion of the chapter, examples of the analysis of specific types of endogenous and exogenous compounds by GG are dealt with. [Pg.2]


See other pages where Columns and detectors is mentioned: [Pg.247]    [Pg.300]    [Pg.572]    [Pg.575]    [Pg.58]    [Pg.305]    [Pg.149]    [Pg.398]    [Pg.930]    [Pg.253]    [Pg.290]    [Pg.298]    [Pg.321]    [Pg.454]    [Pg.914]    [Pg.57]    [Pg.428]    [Pg.182]    [Pg.191]    [Pg.192]    [Pg.193]    [Pg.194]    [Pg.200]    [Pg.211]    [Pg.271]    [Pg.430]    [Pg.31]    [Pg.135]    [Pg.261]    [Pg.240]    [Pg.368]    [Pg.488]    [Pg.91]   
See also in sourсe #XX -- [ Pg.308 ]




SEARCH



© 2024 chempedia.info