Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Colloidal particles chemical reactions

Matijevic, E. Partsch, R.E. (2000) Synthesis of monodispersed colloids by chemical reactions. In Sugimoto.T. (ed.) Fine Particles Synthesis, Characterization and Mechanism of Growth. Marcel Dekker, New York Matijevic, E. Sapieszko, R.S. (2000) Forced hydrolysis in homogeneous solutions. In Sugi-moto, T. (ed.) Fine Particles. Basel, Marcel Dekker, 2-34... [Pg.606]

In special cases (as in colloidal solutions) some particles can be considered as essential and other particles as irrelevant , but in most cases the essential space will itself consist of collective degrees of freedom. A reaction coordinate for a chemical reaction is an example where not a particle, but some function of the distance between atoms is considered. In a simulation of the permeability of a lipid bilayer membrane for water [132] the reaction coordinate was taken as the distance, in the direction perpendicular to the bilayer, between the center of mass of a water molecule and the center of mass of the rest of the system. In proteins (see below) a few collective degrees of freedom involving all atoms of the molecule, describe almost all the... [Pg.20]

Small particles of metals in solution often behave like electrodes although they are not connected to a battery which determines their potential. However, when a chemical reaction occurs in the solution of such particles intermediate free radicals may transfer electrons to them. The particles are thus charged chemically and are able to act as a metal electrode on cathodic potential. Electron transfer reactions become possible at these micro-electrodes which cannot be brought about by the radicals in the absence of the colloidal catalyst. [Pg.114]

The following two papers deal mainly with problems in energy conversion, in piarticular, the transformation of irradiation energy into electrical or chemical energy. The present status and future possible developments of photoelectrochemical energy conversion is presented. In a second paper electrochemical developments are connected to colloidal chemistry and the application of colloidal particles as catalysts for electron transfer reactions and as photocatalysts are discussed. [Pg.193]

For trace analysis in fluids, some Raman sensors (try to) make use of the SERS effect to increase their sensitivity. While the basic sensor layout for SERS sensors is similar to non-enhanced Raman sensors, somehow the metal particles have to be added. Other than in the laboratory, where the necessary metal particles can be added as colloidal solution to the sample, for sensor applications the particles must be suitably immobilised. In most cases, this is achieved by depositing the metal particles onto the surfaces of the excitation waveguide or the interface window and covering them with a suitable protection layer. The additional layer is required as otherwise washout effects or chemical reactions between e.g. sulphur-compounds and the particles reduce the enhancement effect. Alternatively, it is also possible to disperse the metal particles in the layer material before coating and apply them in one step with the coating. Suitable protection or matrix materials for SERS substrates could be e.g. sol-gel layers or polymer coatings. In either... [Pg.148]

Stabilizer. (1) A fractionating column used to remove light gases from a material that is otherwise liquid at ambient temperatures (2) A compound capable of keeping another compound, mixture, or solution from changing its chemical nature a stabilizer can slow down a chemical reaction, keep components in emulsion form, or keep particles in a colloidal suspension from precipitating. [Pg.415]

Cadle, R. D. Formation and chemical reactions of atmospheric particles. J. Colloid Interface Sci. 39 25-31, 1972. [Pg.113]

The production of fine particles that are either desirable (polymer colloids, ceramic precursors, etc.) or undesirable (soot, condensed matter from stack gases, etc.) involves chemical reactions, transport processes, thermodynamics, and physical processes of concern to the chemical engineer. The optimization and control of such processes and the assurance of the quality of the product requires an understanding of the fundamentals of microparticles. [Pg.3]

It would lie far beyond the aim of this chapter to introduce the state-of-the art concepts that have been developed to quantify the influence of colloids on transport and reaction of chemicals in an aquifer. Instead, a few effects will be discussed on a purely qualitative level. In general, the presence of colloidal particles, like dissolved organic matter (DOM), enhances the transport of chemicals in groundwater. Figure 25.8 gives a conceptual view of the relevant interaction mechanisms of colloids in saturated porous media. A simple model consists of just three phases, the dissolved (aqueous) phase, the colloid (carrier) phase, and the solid matrix (stationary) phase. The distribution of a chemical between the phases can be, as first step, described by an equilibrium relation as introduced in Section 23.2 to discuss the effect of colloids on the fate of polychlorinated biphenyls (PCBs) in Lake Superior (see Table 23.5). [Pg.1174]

POWDER. Any solid, dry material of extremely small particle size ranging down to colloidal dimensions, prepared either by comminuting larger units (mechanical grinding), combustion (carbon black, lampblack), or precipitation via a chemical reaction (calcium carbonate, etc ). Powders that are so fine that the particles cannot be detected by rubbing between... [Pg.1364]

Colloidal-sized particles in the atmosphere are called aerosols. Those formed by grinding up bulk matter are known as dispersion aerosols, whereas particles formed from chemical reactions... [Pg.74]

Synthesis of oil soluble micellar calcium thiophosphate was performed in a one-step process involving the reaction of calcium oxide, tetraphosphorus decasulfide and water in the presence of an alkylaryl sulfonic acid. This product could be defined as a calcium thiophosphate hard-core surrounded by a calcium alkylarylsulphonate shell in accordance with a reverse micelle type association in oil. Three micellar products with the same chemical nature core were prepared, each with different core/shell ratio of 0.44, 0.92 and 1.54. Better performances are expected with products of higher core/shell ratios. The antiwear performance of micellar calcium carbonates is directly linked to the size of the mineral CaC03 colloidal particles. At a concentration of 2 % micellar cores, no antiwear effect is observed whatever the micellar size. At an intermediate concentration of 4 % of micellar cores, the wear scar diameter is clearly dependent on the micellar size, slipping from 1.70 mm to 1.10 mm, then to 0.79 mm when the core diameter moves from 4.37 nm to 6.07 nm, then to 6.78 nm. Size dependence is increased at a concentration of 5 % in colloidal cores. This clearly confirms the size dependence of the micellar cores on their antiwear performance (Delfort et al.,... [Pg.105]

M/SC nanoparticles in size from 1 to 10 nm are of greatest interest because their electronic structure depends markedly on the particle size [4-6]. There are now a lot of methods for a deposition of M/SC and dielectric on solid substrates from liquid or gaseous phase to produce composite films containing M/SC nanoparticles inside or on a surface of a dielectric matrix. Liquid-phase technique uses colloidal solutions of M/SC nanoparticles. Such solutions are formed by chemical reactions of various precursors in the presence of stabilizers, which are adsorbed on the surface of nanoparticles and preclude their aggregation. But it is necessary to take into account, that... [Pg.524]


See other pages where Colloidal particles chemical reactions is mentioned: [Pg.232]    [Pg.24]    [Pg.22]    [Pg.395]    [Pg.80]    [Pg.447]    [Pg.267]    [Pg.286]    [Pg.52]    [Pg.117]    [Pg.27]    [Pg.233]    [Pg.118]    [Pg.125]    [Pg.145]    [Pg.170]    [Pg.170]    [Pg.255]    [Pg.214]    [Pg.269]    [Pg.572]    [Pg.149]    [Pg.109]    [Pg.335]    [Pg.545]    [Pg.504]    [Pg.22]    [Pg.79]    [Pg.32]    [Pg.327]    [Pg.309]    [Pg.476]    [Pg.13]    [Pg.268]    [Pg.108]    [Pg.197]    [Pg.66]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Chemical Colloid

Colloid particle

Colloid reaction

Reaction particles

© 2024 chempedia.info