Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt hydrocarbonyl, reactions

The cobalt catalyst can be introduced into the reactor in any convenient form, such as the hydrocarbon-soluble cobalt naphthenate [61789-51 -3] as it is converted in the reaction to dicobalt octacarbonyl [15226-74-17, Co2(CO)g, the precursor to cobalt hydrocarbonyl [16842-03-8] HCo(CO)4, the active catalyst species. Some of the methods used to recover cobalt values for reuse are (11) conversion to an inorganic salt soluble ia water conversion to an organic salt soluble ia water or an organic solvent treatment with aqueous acid or alkah to recover part or all of the HCo(CO)4 ia the aqueous phase and conversion to metallic cobalt by thermal or chemical means. [Pg.458]

The mechanism of the cobalt-cataly2ed oxo reaction has been studied extensively. The formation of a new C—C bond by the hydroformylation reaction proceeds through an organometaUic intermediate formed from cobalt hydrocarbonyl which is regenerated in the aldehyde-forrning stage. The mechanism (5,6) for the formation of propionaldehyde [123-38-6] from ethylene is illustrated in Figure 1. [Pg.466]

The earhest modification of the Oxo process (qv) employed cobalt hydrocarbonyl, HCo(CO)4, as catalyst. The reaction was carried out in the Hquid phase at 130—160°C and 10—20 MPa (1450—2900 psi) to give a ratio of n- to isobutyraldehyde of between 2 1 to 4 1. / -Butyraldehyde, the straight-chain isomer and the precursor of 2-ethylhexanol, was the more valuable product so that a high isomer ratio of n- to isobutyraldehyde was obviously advantageous. [Pg.380]

Hydroformylation, or the 0X0 process, is the reaction of olefins with CO and H9 to make aldehydes, which may subsequently be converted to higher alcohols. The catalyst base is cobalt naph-thenate, which transforms to cobalt hydrocarbonyl in place. A rhodium complex that is more stable and mnctions at a lower temperature is also used. [Pg.2094]

The formation of formate esters in the hydroformylation reaction (90, 64) may be explained by a CO-alkoxide insertion reaction as well as by the CO-hydride insertion mechanism mentioned above. Aldehydes formed in the hydroformylation reaction can be reduced by cobalt hydrocarbonyl (27) presumably by way of an addition of the hydride to the carbonyl group (90, 2). If the intermediate in the reduction is an alkoxycobalt carbonyl, carbon monoxide insertion followed by hydrogenation would give formate esters (90, 64). [Pg.183]

The addition of cobalt hydrocarbonyl to olefins has been investigated and information on the detailed mechanism of the reaction obtained. The reaction of 1-pentene with cobalt hydrocarbonyl to produce a mixture of 1- and 2-pentylcobalt tetracarbonyls was shown to be inhibited by carbon monoxide (46). The inhibition very likely arises because the reactive species is cobalt hydrotricarbonyl rather than the tetracarbonyl. The carbon monoxide, by a mass action effect, reduces the concentration of the reactive species. [Pg.184]

Cobalt hydrocarbonyl is a very reactive compound. It reacts extremely rapidly with triphenylphosphine, probably by a first-order dissociation mechanism, producing cobalt hydrotricarbonyl triphenylphosphine (44). This demonstrates the very ready replacement of one ligand by another. Cobalt hydrocarbonyl also catalyzes the isomerization of olefins. Under conditions of the hydroformylation reaction, olefin isomerization is observed. But there is controversy as to whether or not rearranged aldehydes (aldehydes which cannot be produced by simple addition to the starting olefin) are produced mainly by rearrangement of an intermediate in the reaction (28, 75, 55) or by reaction of isomerized olefins (55). [Pg.185]

Metal Hydrides. Metal hydrides generally react readily with acetylenes, often by an insertion mechanism. Cobalt hydrocarbonyl gives complicated mixtures of compounds with acetylenes. The only products which have been identified so far are dicobalt hexacarbonyl acetylene complexes (34). Greenfield reports that, under conditions of the hydroformy lation reaction, acetylenes give only small yields of saturated monoaldehydes (30), probably formed by first hydrogenating the acetylene and then reacting with the olefin. Other workers have identified a variety of products from acetylene, carbon monoxide, and an alcohol with a cobalt catalyst, probably cobalt hydrocarbonyl. The major products observed were succinate esters (74,19) and succinate half ester acetals (19). [Pg.193]

Metal Hydrides. It is likely that the reduction of aldehydes to alcohols by cobalt hydrocarbonyl (27) is an example of a carbonyl insertion reaction with a metal hydride. It is not clear which way the hydrocarbonyl adds to the carbonyl groups —whether it forms a cobalt-carbon bond (2), or a cobalt-oxygen bond (90). [Pg.200]

RCH2OH + Co2(CO)7 (72) A known reaction of cobalt hydrocarbonyl suggests that the cobalt-carbon bond may be preferred. It has been reported that, under rather vigorous conditions, acetaldehyde or formaldehyde react with CO and a cobalt catalyst to give o -hydroxy acids or esters in alcohol solution (7). The intermediate with the carbon-cobalt bond probably is undergoing a CO insertion reaction, folllwed by a hydrolysis or... [Pg.201]

Figure C shows carbon monoxide insertion reactions. There are a number of reduction reactions of carbon monoxide catalyzed by transition metals, and these, I believe, all involve an insertion of carbon monoxide into a metal hydride as an initial step. Cobalt hydrocarbonyl reacts with carbon monoxide to give formate derivatives. This is probably an insertion reaction also. Figure C shows carbon monoxide insertion reactions. There are a number of reduction reactions of carbon monoxide catalyzed by transition metals, and these, I believe, all involve an insertion of carbon monoxide into a metal hydride as an initial step. Cobalt hydrocarbonyl reacts with carbon monoxide to give formate derivatives. This is probably an insertion reaction also.
Figure D shows some olefin insertion reactions. Hydride additions to olefins have been known for a long while. Among these many examples, manganese hydrocarbonyl, and cobalt hydrocarbonyl, magnesium hydride, diborane, alkylalu-minum hydrides, germanium and tin hydrides all add quite readily to olefins. These last two cases are questionable because the mechanism is not clear. Some of these additions occur without a catalyst some are speeded up by ultraviolet light some are catalyzed by Group VIII metals. So it is not clear whether all these reactions are the same or whether there are several different mechanisms. Figure D shows some olefin insertion reactions. Hydride additions to olefins have been known for a long while. Among these many examples, manganese hydrocarbonyl, and cobalt hydrocarbonyl, magnesium hydride, diborane, alkylalu-minum hydrides, germanium and tin hydrides all add quite readily to olefins. These last two cases are questionable because the mechanism is not clear. Some of these additions occur without a catalyst some are speeded up by ultraviolet light some are catalyzed by Group VIII metals. So it is not clear whether all these reactions are the same or whether there are several different mechanisms.
Figure F shows some acetylene insertion reactions. These, too, are similar to the olefin insertion reactions. The manganese and cobalt hydrocarbonyls again add. Chloronickelcarbonyl hydride, which I believe is an intermediate in many of the nickel carbonyl-catalyzed reactions, adds to olefins. Diborane and the aluminum hydrides also add. Figure F shows some acetylene insertion reactions. These, too, are similar to the olefin insertion reactions. The manganese and cobalt hydrocarbonyls again add. Chloronickelcarbonyl hydride, which I believe is an intermediate in many of the nickel carbonyl-catalyzed reactions, adds to olefins. Diborane and the aluminum hydrides also add.
The mechanism most consistent with all the data is an ionic acid opening of the epoxide —apparently where the hydrocarbonyl is used as an acid to attack the epoxide— which is more sensitive to steric effects than to electronic factors. This conclusion may at first appear to be inconsistent with our previous finding that isobutylene reacted with cobalt hydrocarbonyl to give exclusively addition of the cobalt to the tertiary position. The inhibitory effect of carbon monoxide on that reaction, however, indicated that it was probably cobalt hydrotricarbonyl that was actually adding to the olefin and steric effects would be expected to be much less important with the tricarbonyl than with the tetracarbonyl (7) Apparently he feels now that the former reactions really involve the tricarbonyl, loss of CO being important to get the reaction running whereas epoxide attack perhaps involves a tetracarbonyl, steric factors are more important here. [Pg.212]

Despite very extensive studies on this reaction, there is still considerable uncertainty about its mechanism. The reaction occurs at about the same rate in a wide variety of organic solvents, including benzene, heptane, and alcohol, suggesting that polar intermediates are not involved (Wender et al., 41). Reaction of the olefin with preformed cobalt hydrocarbonyl also gives the aldehyde product (Wender et al., 4 ). This, together with the observation that cobalt hydrocarbonyl is formed under hydroformylation conditions in the absence of olefin, but cannot be detected in the presence... [Pg.318]

It should be noted that the Natta-Martin mechanism, while satisfactory from the kinetic standpoint, does not assign any role in the reaction to cobalt hydrocarbonyl. Hence, it is not readily reconciled with the evidence for the formation of the latter under hydroformylation conditions and its known reactions with olefins (Kirch and Orchin, 43). [Pg.320]

The hydroformylation of alkenes generally has been considered to be an industrial reaction unavailable to a laboratory scale process. Usually bench chemists are neither willing nor able to carry out such a reaction, particularly at the high pressures (200 bar) necessary for the hydrocarbonylation reactions utilizing a cobalt catalyst. (Most of the previous literature reports pressures in atmospheres or pounds per square inch. All pressures in this chapter are reported in bars (SI) the relationship is 14.696 p.s.i. = 1 atm = 101 325 Pa = 1.013 25 bar.) However, hydroformylation reactions with rhodium require much lower pressures and related carbonylation reactions can be carried out at 1-10 bar. Furthermore, pressure equipment is available from a variety of suppliers and costs less than a routine IR instrument. Provided a suitable pressure room is available, even the high pressure reactions can be carried out safely and easily. The hydroformylation of cyclohexene to cyclohexanecarbaldehyde using a rhodium catalyst is an Organic Syntheses preparation (see Section 4.5.2.5). [Pg.914]

The reaction of alkenes (and alkynes) with synthesis gas (CO + H2) to produce aldehydes, catalyzed by a number of transition metal complexes, is most often referred to as a hydroformylation reaction or the oxo process. The discovery was made using a cobalt catalyst, and although rhodium-based catalysts have received increased attention because of their increased selectivity under mild reaction conditions, cobalt is still the most used catalyst on an industrial basis. The most industrially important hydrocarbonylation reaction is the synthesis of n-butanal from propene (equation 3). Some of the butanal is hydrogenated to butanol, but most is converted to 2-ethylhexanol via aldol and hydrogenation sequences. [Pg.914]

Most of the growth in our understanding of reactions catalyzed by dicobalt octacarbonyl has resulted from a study of the individual reactions of catalytic intermediates such as cobalt hydrocarbonyl. At much lower temperatures and pressures than are used in the corresponding catalytic processes, cobalt hydrocarbonyl has been found to give rise to similar reactions, but stoichiometrically. The study of these noncatalytic reactions has enhanced our understanding of the corresponding catalytic reactions to the point where we can focus on the reasons for the smaller differences rather than the larger similarities. Because of their importance, a discussion of the... [Pg.120]

The noncatalytic reaction of cobalt hydrocarbonyl with olefins to produce aldehydes... [Pg.122]

When a large excess of olefin was used, the cobalt hydrocarbonyl was completely used up in Eq. (2), and Eq. (3) did not occur. In this case the products have been recovered as the triphenylphosphine derivatives, or as the esters by reaction of the acylcobalt carbonyls with iodine and an alcohol. [Pg.122]

Prior to Takegami s studies, the effect of isomerization of acylcobalt carbonyls on the products of the reaction between cobalt hydrocarbonyl and olefins had received little attention. Terminal olefins had been found to give a mixture of linear and branched products at low temperatures under carbon monoxide, and this was taken as reflecting the mode of addition of cobalt hydrocarbonyl (62, 73, 147). In view of the slow rate of isomerization of acylcobalt carbonyls this seems justified. However, it is worth noting that branched products predominated in the reaction of 1-pentene with hydrocarbonyl under nitrogen even when the olefin had isomerized only to the extent of 50% (73). Both isobutylene and alkyl acrylates had been found to produce branched products. It was suggested that isobutylene, with an... [Pg.125]

Takegami et al. (147) reexamined the reaction of olefins with cobalt hydrocarbonyl to determine the effect of reaction variables and the possibility of isomerization on the structure of the acylcobalt carbonyls formed. Products were recovered as their ethyl esters as described previously. Additionally, the uptake of carbon monoxide was measured. This is important since the presence of an acylcobalt tricarbonyl can be inferred when the amount of ester produced exceeds the amount of carbon monoxide absorbed. [Pg.126]

Some light has been thrown on this unusual reaction by a study of the reaction of cobalt hydrocarbonyl with olefins under nitrogen (14). It has also be discussed recently by Heck (59). [Pg.135]

An unusual synthesis of acyldienes from conjugated dienes, carbon monoxide, and alkyl or acyl halides using cobalt carbonylate anion as a catalyst should be mentioned here (57). The reaction apparently involves the addition of an acylcobalt carbonyl to a conjugated diene to produce a l-acylmethyl-7r-allylcobalt tricarbonyl, followed by elimination of cobalt hydrocarbonyl in the presence of base. The reaction can thus be made catalytic. Since the reaction was discussed in detail in the recent review by Heck (59), it will not be pursued further here. [Pg.136]

A useful study has just been completed by Roos and Orchin (125), who have examined the effect of ligands such as benzonitrile on the stoichiometric hydroformylation of olefins. A variety of such reagents (acetonitrile, anisole) were found to act in a similar manner to carbon monoxide by suppressing the formation of branched products and the isomerization of excess olefin. The yield of aldehyde was also increased by increasing ligand concentration up to 2 moles per mole of cobalt hydrocarbonyl. Benzonitrile was not found to affect the rate of the reaction of cobalt hydrocarbonyl with acylcobalt tetracarbonyl, so the ligand must have affected an earlier step in the reaction sequence. It seems most likely that cobalt hydrocarbonyl reacts with olefin in the presence of benzonitrile to form an acylcobalt tricarbonyl-benzonitrile complex which is reduced more rapidly than the acylcobalt tetracarbonyl. [Pg.136]

Pyridine and triphenylphosphine were found to stop the reaction by combining with cobalt hydrocarbonyl, the former to produce PyH+[Co(CO)4]- and the latter to form HCo(CO)3P(C6H5)3. [Pg.137]

Trimethylene oxide also reacts rapidly with cobalt hydrocarbonyl and carbon monoxide at 0° C to produce 4-hydroxybutyrylcobalt tetracarbonyl, identified by means of its triphenylphosphine derivative, and the reaction of the tetracarbonyl with dicyclohexylethylamine to produce y-butyrolactone... [Pg.143]

Equation (44) is reminiscent of the reaction of cobalt hydrocarbonyl with epoxides which therefore suggests the preceding step... [Pg.146]


See other pages where Cobalt hydrocarbonyl, reactions is mentioned: [Pg.466]    [Pg.380]    [Pg.146]    [Pg.21]    [Pg.185]    [Pg.186]    [Pg.203]    [Pg.210]    [Pg.211]    [Pg.319]    [Pg.380]    [Pg.122]    [Pg.127]    [Pg.133]    [Pg.141]    [Pg.142]    [Pg.142]    [Pg.144]    [Pg.149]   


SEARCH



Cobalt hydrocarbonyl

Cobalt reactions

Hydrocarbonyl

Hydrocarbonylation

Hydrocarbonylations

Hydrocarbonyls

© 2024 chempedia.info