Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cloud combustion

Leyer, J. C. 1982. An experimental study of pressure fields by exploding cylindrical clouds. Combustion and Flame. 48 251-263. [Pg.141]

In the analysis considered in the preceding section, it was assumed that a uniform spray had been established initially and that once ignited, each droplet burned with an envelope flame around it. These conditions have been achieved reasonably well in the laboratory for various fuel-lean sprays [65]. However, in practical systems the sprays are not uniform, the manner in which the spray penetrates the oxidizing gas is important, and a cloudburning mode of combustion (in which diffusion flames surround groups of droplets, see the last paragraph of Section 3.3.6) may occur [2], [79]. These realities motivate studies of spray penetration and cloud combustion. [Pg.480]

The presentation of the subject of spray combustion in Chapter 11 is not greatly different from that in the first edition. An updated outlook on the subject has been provided, and the formulation has been generalized to admit time dependences in the conservation equations. The analysis of spray deflagration has been abbreviated, and qualitative aspects of the results therefrom have been anticipated on the basis of simplified physical reasoning. In addition, brief discussions of the topics of spray penetration and of cloud combustion have been added. [Pg.703]

At high combustion temperatures, up to 70% or more of the reactive coal mass can be consumed through this process. Volatiles combustion in practical systems is complicated by turbulent mixing of fuel and oxidizer, soot formation and radiation, and near-bumer fluid dynamics. Such systems usually exhibit volatiles cloud combustion, rather than single-particle combustioa... [Pg.117]

I.O. Moen, D. Bjerketvedt, A. Jenssen, P. Thibault, Transition to detonation in large fuel cloud. Combust. Flame 61(3), 285-291 (1985)... [Pg.216]

Dangerous blast waves are generated by a gas cloud combustion with a visible front velocity, at least 150-200 m/s. Unfortunately it is impossible to predict a blast velocity value in a gaseous or heterogeneous cloud (initial conditions of a particular case are known), because it is necessary to take into consideration many factors that influence cloud generation, its shape and fuel composition [2, 3, 5-7]. [Pg.245]

However, it is not right to attribute HE blast parameters to those of gas cloud combustion/detonation based only on their energy similarity, such a procedure needs corrections. Let us remind you that the expansion level of gas explosion products is dozens of times less than is recorded for HE explosions. Geometrical dimensions of the low density source of an explosion are large and always comparable with a distance within which the blast wave is dangerous. [Pg.246]

The problem of explosion of a vapor cloud is not only that it is potentially very destructive but also that it may occur some distance from the point of vapor release and may thus threaten a considerable area. If the explosion occurs in an unconfined vapor cloud, the energy in the blast wave is generally only a small fraction of the energy theoretically available from the combustion of all the material that constitutes the cloud. The ratio of the actual energy released to that theoretically available from the heat of combustion is referred to as the explosion efficiency. Explosion efficiencies are typically in the range of 1 to 10 percent. A value of 3 percent is often assumed. [Pg.258]

The vapor cloud of evaporated droplets bums like a diffusion flame in the turbulent state rather than as individual droplets. In the core of the spray, where droplets are evaporating, a rich mixture exists and soot formation occurs. Surrounding this core is a rich mixture zone where CO production is high and a flame front exists. Air entrainment completes the combustion, oxidizing CO to CO2 and burning the soot. Soot bumup releases radiant energy and controls flame emissivity. The relatively slow rate of soot burning compared with the rate of oxidation of CO and unbumed hydrocarbons leads to smoke formation. This model of a diffusion-controlled primary flame zone makes it possible to relate fuel chemistry to the behavior of fuels in combustors (7). [Pg.412]

A third screening smoke-type is white phosphoms [7723-14-0] (WP), P (see Phosphorus and THE phosphides), which reacts spontaneously with air and water vapor to produce a dense cloud of phosphoms pentoxide [1314-56-3]. An effective screen is obtained as the P2O5 hydrolyzes to form droplets of dilute phosphoric acid aerosol. WP produces smoke in great quantity, but it has certain disadvantages. Because WP has such a high heat of combustion, the smoke it produces from bulk-filled munitions has a tendency to rise in pillarlike mass. This behavior too often nullifies the screening effect, particularly in stiU air. Also, WP is very brittle, and the exploding munitions in which it is used break it into very small particles that bum rapidly. [Pg.401]

Many finely divided metal powders in suspension in air are potential e] losion hazards, and causes for ignition of such dust clouds are numerous [Hartmann and Greenwald, Min. MetalL, 26, 331 (1945)]. Concentration of the dust in air and its particle size are important fac tors that determine explosibility. Below a lower Umit of concentration, no explosion can result because the heat of combustion is insufficient to propagate it. Above a maximum limiting concentration, an explosion cannot be produced because insufficient oxygen is available. The finer the particles, the more easily is ignition accomplished and the more rapid is the rate of combustion. This is illustrated in Fig. 20-7. [Pg.1830]

Many combustible dusts produced by industrial processes are explosible when they are suspended as a cloud in air. A spark may be sufficient to ignite them. After ignition, flame spreads rapidly through the dust cloud as successive layers are heated to ignition temperature. [Pg.2314]

Pressure Development Overpressure in a UVCE results from turbulence that promotes a sudden release of energy. Tests in the open without obstacles or confining structures do not produce damaging overpressure. Nevertheless, combustion in a vapor cloud within a partially confined space or around turbulence-producing obstacles may generate damaging overpressure. Also, turbulence in a jet release, such as may occur with compressed natural gas discharged from a ruptured pipehne, may result in blast pressure. [Pg.2320]

Example The combustion process in large vapor clouds is not known completely and studies are in progress to improve understanding of this important subject. Special study is usually needed to assess the hazard of a large vapor release or to investigate a UVCE. The TNT equivalent method is used in this example other methods have been proposed. Whatever the method used for dispersion and pressure development, a check should be made to determine if any govern-mentaf unit requires a specific type of analysis. [Pg.2320]

Large Fans These could be used to dilute a vapor cloud below its LFL with ambient air (see, for example, Whiting and Shaffer, Feasi-bihty Study of Hazardous Vapor Amelioration Techniques, Proc. 1978 Nat. Conf. on Control of Hazardous Material Spills, USEPA, Miami Beach, April 1978). But caution must be exercised because the turbulence produced by fans will likely promote rapid combustion and a resulting UVCE unless vapors are diluted below the LFL. Nevertheless, in new plants, strategic placement of air coolers may provide enough air flow to reduce the risk of a UVCE. [Pg.2321]

Definition of Dust E losion A dust explosion is the rapid combustion of a dust cloud. In a confined or nearly confined space, the explosion is characterized by relatively rapid development of pressure with a flame propagation and the evolution of large quantities of heat and reaction products. The required oxygen for this combustion is mostly supphed oy the combustion air. The condition necessaiy for a dust explosion is a simultaneous presence of a dust cloud of proper concentration in air that will support combustion and a suitable ignition source. [Pg.2322]

Fire Hazards - Flash Point Not pertinent (combustible solid) Flammable Limits in Air (%) Not pertinent Fire Extinguishing Agents Water, dry chemical, carbon dioxide Fire Extinguishing Agents Not to be Used Not pertinent Special Hazards cf Combustion Products Not pertinent Behavior in Fire Not pertinent Ignition Temperature (deg. F) 842 (dust cloud) Electrical Hazard Not pertinent Burning Rate Not pertinent. [Pg.308]

Are combustible powders or vaporizing liquids processed If these can be released and dispersed as a cloud an explosion can result. For example, there have been severe explosions at bread flower mills. [Pg.293]

If the explosion occurs in an unconfined vapor cloud, the energy in the blast wave is only a small fraction of the energy calculated as the product of the cloud mass and the heat of combustion of the cloud material. On this basis, explosion efficiencies are typically in the range of 1-10%. [Pg.340]

When an explosion occurs, however, it can directly cause injury. A substantial cloud of gas can accumulate before the combustible limit reache.s an ignition source. The force of the explosion as the cloud ignites can be substantial. [Pg.393]

It is possible to measure the extent of a leak of flammable gas or vapor with a combustible gas detector. If the leak is small, a person may be allowed (but not expected) to put his hands, suitably protected, inside the flammable cloud. But only in the most exceptional circumstances should a person be allowed to put more of his body into the cloud. [Pg.159]

A deflagration can best be described as a combustion mode in which the propagation rate is dominated by both molecular and turbulent transport processes. In the absence of turbulence (i.e., under laminar or near-laminar conditions), flame speeds for normal hydrocarbons are in the order of 5 to 30 meters per second. Such speeds are too low to produce any significant blast overpressure. Thus, under near-laminar-flow conditions, the vapor cloud will merely bum, and the event would simply be described as a large fiash fire. Therefore, turbulence is always present in vapor cloud explosions. Research tests have shown that turbulence will significantly enhance the combustion rate in defiagrations. [Pg.4]

A flash fire results from the ignition of a released flammable cloud in which there is essentially no increase in combustion rate. In fact, the combustion rate in a flash fire does increase slightly compared to the laminar phase. This increase is mainly due to the secondary influences of wind and surface roughness. [Pg.5]

Figure 2.1 identifies the conditions necessary for the occurrence of a flash fire. Only combustion rate differentiates flash fires from vapor cloud explosions. Combustion rate determines whether blast effects will be present (as in vapor cloud explosions) or not (as in flash fires). [Pg.5]

A BLEVE involving a container of flammable liquid will be accompanied by a fireball if the BLEVE is fire-induced. The rapid vaporization and expansion following loss of containment results in a cloud of almost pure vapor and mist. After ignition, this cloud starts to bum at its surface, where mixing with air is possible. In the buoyancy stage, combustion propagates to the center of the cloud causing a massive fireball. [Pg.8]

Data on dispersion and combustion of aerosol-air clouds are scarce, although Burgoyne (1963) showed that the lower flannmability limits on a weight basis of hydrocarbon aerosol-air mixtures are in the same range as those of gas- or vapor-air mixtures, namely, about 50 g/m. ... [Pg.48]

Generally, at any moment of time the concentration of components within a vapor cloud is highly nonhomogeneous and fluctuates considerably. The degree of homogeneity of a fuel-air mixture largely determines whether the fuel-air mixture is able to maintain a detonative combustion process. This factor is a primary determinant of possible blast effects produced by a vapor cloud explosion upon ignition. It is, therefore, important to understand the basic mechanism of turbulent dispersion. [Pg.48]


See other pages where Cloud combustion is mentioned: [Pg.559]    [Pg.69]    [Pg.480]    [Pg.69]    [Pg.480]    [Pg.137]    [Pg.146]    [Pg.559]    [Pg.69]    [Pg.480]    [Pg.69]    [Pg.480]    [Pg.137]    [Pg.146]    [Pg.351]    [Pg.1580]    [Pg.2319]    [Pg.164]    [Pg.87]    [Pg.169]    [Pg.143]    [Pg.294]    [Pg.339]    [Pg.47]   
See also in sourсe #XX -- [ Pg.69 , Pg.480 ]

See also in sourсe #XX -- [ Pg.69 , Pg.480 ]




SEARCH



© 2024 chempedia.info