Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Clay minerals reactivity

The reactivity of steam can be reduced via pH control. The injection or addition of a buffer such as ammonium chloride inhibits the dissolution of certain mineral groups, controls the migration of fines, inhibits the swelling of clays, controls chemical reactions in which new clay minerals are formed, and... [Pg.214]

Carbonates, organic matter, Fe and Mn oxides, and clay minerals play important roles in controlling overall reactivity of trace elements in soils and sediments. This chapter addresses the interaction of trace elements with carbonates, organic matter, Fe and Mn oxides and clay minerals. Analytical techniques for trace element speciation in solid-phase and their distribution among various solid-phase components in arid and semi-arid soils are reviewed. Solubilities of trace elements in solid phases and their mineralogical characteristics in arid and semi-arid soils also are discussed. [Pg.131]

In addition to SOM, clay minerals are another important component that may influence contaminant-soil interactions. Expandable 2 1 type clays are usually more reactive than other clay minerals. Park et al. (2003) used a K-saturated montmorillonite as a sorbent to evaluate the availability of sorbed atrazine to three atrazine-degrading bacteria. K-saturated montmorillonite has a high atrazine sorption capacity with a Freundlich sorption... [Pg.271]

An important consideration in constructing certain types of geochemical models, especially those applied to environmental problems, is to account for the sorption of aqueous species onto sediment surfaces (e.g., Zhu and Anderson, 2002). Because of their large surface areas and high reactivities (e.g., Davis and Kent, 1990), many components of a sediment - especially clay minerals, zeolites, metal oxides and oxyhydroxides, and organic matter - can sorb considerable masses. [Pg.137]

Primary minerals with low surface area (e.g., sihca minerals) and low reactivity mainly affect the physical transport of water, dissolved chemicals, colloids, immiscible (in water) liqnids, and vapors. Secondary minerals generally have high surface area (e.g., clay minerals) and high reactivity that affect the transport of chemicals, their retention and release onto and from the solid phase, and their surface-induced transformations. The sohd phase also can indirectly induce the degradation of chemical compounds, through its effects on the water-air ratio in the system and, thus, on microbiological activity. [Pg.4]

Phenolic compounds have also been oxidatively polymerized to humic substances by clay minerals (29) and by the mineral fraction of a latasol (66). After a 10-day equilibration period, montmoril-lonite and illite clay minerals yielded 44 to 47% of the total added phenolic acids as humic substances whereas quartz gave only 9%. Samples of a latasol yielded over 63% of the total amount, from mixtures in varied proportion, of mono-, di- and trihydroxy phenolic compounds as humic substances (66). Extractions of the reaction products yielded humic, fulvic, and humin fractions that resembled soil natural fractions in color, in acid-base solubility, and in infrared absorption spectra. Wang and co-workers (67) further showed that the catalytic polymerization of catechol to humic substances was, enhanced by the presence of A1 oxide and increased with pH in the 5.0 to 7.0 range. Thus the normally very reactive products of Itgnin degradation can be linked into very stable humic acid polymers which will maintain a pool of potentially reactive phytotoxins in the soil. [Pg.367]

Upon adsorption of Fe " at a solid surface, the standard redox potential of the Fe /Fe pair is reduced substantially from 0.77 V to 0.35-0.45 V (Wehrli, 1990) thereby facilitating the electron transfer. Buerge and Hug (1999) have demonstrated that this higher reactivity may be responsible for the fact that solid phases (Fe oxides, Si02, and clay minerals) in natural systems accelerate Cr reduction and that goethite and lepidocrocite are by far more active in this respect than the rest of the solid phases, because these two FeOOH forms adsorb much more Fe ". The authors attribute this to better overlap and charge delocalization at the surface of the Fe oxides. [Pg.548]

Feltz, A. Martin, A. (1987) Solid-state reactivity and mechanisms in oxide systems. 11 Inhibition of zinc ferrite formation in zinc oxide - a-iron(lll) oxide mixtures with a large excess of a-iron(lll) oxide. In Schwab, G.M. (ed.) Reactivity of solids. Elsevier, 2 307—313 Fendorf, S. Fendorf, M. (1996) Sorption mechanisms of lanthanum on oxide minerals. Clays Clay Miner. 44 220-227 Fendorf, S.E. Sparks, D.L. (1996) X-ray absorption fine structure spectroscopy. In Methods of Soil Analysis. Part 3 Chemical Methods. Soil Sd. Soc. Am., 377-416 Fendorf, S.E. Eick, M.J. Grossl, P. Sparks, D.L. (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ. Sci. Techn. 31 315-320 Fendorf, S.E. Li,V. Gunter, M.E. (1996) Micromorphologies and stabilities of chromiu-m(III) surface precipitates elucidated by scanning force microscopy. Soil Sci. Soc. Am. J. 60 99-106... [Pg.578]

Oxidation of sulfides and sulfoxides using Oxone dispersed on silica gel or alumina was reported . A study of surface mediated reactivity of Oxone compared its reactivity with that of ferf-butyl hydroperoxide. Oxidation of sulfides to sulfones in aprotic solvents mediated by Oxone on wet montmorillonite or clay minerals proceeds in high yields. Interestingly, when Oxone on alumina is applied for selective oxidation of sulfides in aprotic solvents, the product distribution is temperature-dependent and sulfoxides or sulfones are obtained in good to excellent yields (equation 56) . ... [Pg.1025]

Clay minerals are very reactive substances and are part of the physio-chemical world, thus they should obey the known rules or concepts of thermodynamic behavior. The attempt here has been to apply the equilibrium... [Pg.185]

Particle size distribution refers to the distribution of particles in the soil matrix. In general, the three types of soil are sand, clay, and loam. Sand is soil composed of at least 70% sand clay is soil consisting of at least 35% clay and loam soil contains equal weights of sand, clay, and silt. Particular size or soil texture can affect the treatability of contaminated soil in two ways. The potential reaction sites are primarily limited to the surface of particles. The surface-to-volume ratio has a major impact on the nature and rate of reactions between the particle and the contaminant therefore, larger sandsized particles are less reactive than smaller clay-sized particles, particularly if reactions may occur between the sheets of clay minerals. [Pg.52]

In the face of all wisdom concerning choice of models, the section on active centers takes clay as a model, the mineral class that is most, rather than least, complex. Clays happen to be the mineral class most studied with respect to natural reactivity. They are among the more important classes of minerals reactive in natural systems, and they are known to include most of the generic site types thought to be influential in mineral interfacial chemistry. A special emphasis is placed on acidic and oxidizing entities because of their importance and because evidence is accumulating to indicate that they are interrelated. [Pg.6]

Mineral Energetic Factors Expected to Influence Organic Surface Reactivity Using Clay Minerals as Examples... [Pg.12]

Despite their overawing complexity, clay minerals are to receive particular emphasis in this book as model systems. They are of high abundance and of key importance in sedimentary and soil systems (63-64), as ceramic materials (65) and as industrial fillers (66) they exhibit essentially all of the generic spectroscopic and surface chemical properties of reactive minerals in general and there are good reasons to believe that many of the spectroscopic and chemical attributes of minerals as a whole may be exaggerated in clays. [Pg.12]

The theoretical results described here give only a zeroth-order description of the electronic structures of iron bearing clay minerals. These results correlate well, however, with the experimentally determined optical spectra and photochemical reactivities of these minerals. Still, we would like to go beyond the simple approach presented here and perform molecular orbital calculations (using the Xo-Scattered wave or Discrete Variational method) which address the electronic structures of much larger clusters. Clusters which accomodate several unit cells of the crystal would be of great interest since the results would be a very close approximation to the full band structure of the crystal. The results of such calculations may allow us to address several major problems ... [Pg.307]

The activity of clay minerals, proven in the reactivity of terrestrial (15-16), and postulated in Martian (j ) soils, is disproportionate to their quantity, relative to other minerals. This is the result of several factors small particle size, high specific surface area, Bronsted and Lewis acidity, redox and other potentially catalytically active sites common to clay minerals, and a limited capacity for size exclusion (which is influenced by the number and valence of exchangeable cations ( )). [Pg.407]

Future EXAFS studies of the local structure of reactive sites in pillared clay derivatives and related hydroxy-interlayered clay minerals should help elucidate the reactivity of these materials as catalysts for synthetic organic chemical conversions, as well as for reactions occurring in the natural soil environment. [Pg.463]


See other pages where Clay minerals reactivity is mentioned: [Pg.452]    [Pg.193]    [Pg.195]    [Pg.60]    [Pg.538]    [Pg.141]    [Pg.239]    [Pg.244]    [Pg.13]    [Pg.68]    [Pg.87]    [Pg.146]    [Pg.151]    [Pg.13]    [Pg.342]    [Pg.395]    [Pg.321]    [Pg.229]    [Pg.645]    [Pg.417]    [Pg.87]    [Pg.45]    [Pg.590]    [Pg.204]    [Pg.209]    [Pg.386]    [Pg.52]    [Pg.524]    [Pg.46]    [Pg.73]    [Pg.407]    [Pg.430]    [Pg.157]    [Pg.211]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Clay minerals

© 2024 chempedia.info