Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction site potential

Many electron-deficient aromatic substrates have several reaction sites potentially capable of undergoing nucleophilic substitution of hydrogen including tandem SnH-SnH substitution. The problem is that when the first nucleophilic group has... [Pg.90]

In contrast to the saturated azlactones, the Friedel-Crafts reaction of 2-substituted-4-arylidene-5-oxazolones is quite complex and may follow several different courses, often concurrently, depending on both reaction conditions and structural variations in the arylidene ring. This behavior is readily interpreted in terms of the a,)S-unsaturated carbonyl moiety and the cross-conjugated system containing nitrogen, both of which provide potential reaction sites in addition to the lactone carbonyl group. The reaction has been investigated " ... [Pg.83]

Myers has discovered a related reaction of the natural product neocarzinostatine 8 (simplified structure). As in the case of the Bergman cyclization a diradical intermediate is generated by a chemical activation step taking place at the reaction site, where it then can cleave DNA. Because of this feature, together with its discriminating affinity towards different DNA strands, neocarzinostatine is regarded as a potential antitumor agent. [Pg.40]

The reactivity modification or the reaction rate control of functional groups covalently bound to a polyelectrolyte is critically dependent on the strength of the electrostatic potential at the boundary between the polymer skeleton and the water phase ( molecular surface ). This dependence is due to the covalent bonding of the functional groups which fixes the reaction sites to the molecular surface of the polyelectrolyte. Thus, the surface potential of the polyion plays a decisive role in the quantitative interpretation of the reactivity modification on the molecular surface. [Pg.55]

Here we will not discuss these problems and the intriguing observation that am and strong correlation which is, however, difficult to explain (reviews Charton, 1981 Cook et al., 1989 Hansch et al., 1991). These questions were intensively studied in the 1970s and 1980s, leading gradually to the development of field and resonance parameters denoted by F and R respectively (after an original proposal of Swain and Lupton, 1968), which can be considered as independent of each other. The secondary parameters R + and R reflect the potential for an additional mesomeric donor-acceptor interaction (as in 7.7, and the opposite type with a donor instead of NQ2 and the reaction site as acceptor). [Pg.149]

For the same reason, Ru(OOOl) modihcation by Pt monolayer islands results in a pronounced promotion of the CO oxidation reaction at potentials above 0.55 V, which on unmodified Ru(OOOl) electrodes proceeds only with very low reaction rates. The onset potential for the CO oxidation reaction, however, is not measurably affected by the presence of the Pt islands, indicating that they do not modify the inherent reactivity of the O/OH adlayer on the Ru sites adjacent to the Pt islands. At potentials between the onset potential and a bending point in the j-E curves, COad oxidation proceeds mainly by dissociative H2O formation/ OHad formation at the interface between the Ru(OOOl) substrate and Pt islands, and subsequent reaction between OHad and COad- The Pt islands promote homo-lytic H2O dissociation, and thus accelerate the reaction. At potentials anodic of the bending point, where the current increases steeply, H2O adsorption/OHad formation and COad oxidation are proposed to proceed on the Pt monolayer islands. The lower onset potential for CO oxidation in the presence of second-layer Pt islands compared with monolayer island-modified Ru(OOOl) is assigned to the stronger bonding of a double-layer Pt film (more facile OHad formation). [Pg.497]

As with carbocation-initiated polyene cyclizations, radical cyclizations can proceed through several successive steps if the steric and electronic properties of the reactant provide potential reaction sites. Cyclization may be followed by a second intramolecular step or by an intermolecular addition or alkylation. Intermediate radicals can be constructed so that hydrogen atom transfer can occur as part of the overall process. For example, 2-bromohexenes having radical stabilizing substituents at C(6) can undergo cyclization after a hydrogen atom transfer step.348... [Pg.980]

The structural changes that accompanied the [2 + 2] photodimerization of the metastable a -polymorph of ort/zo-ethoxy-tranx-cinnamic acid have been studied [93]. In this study, the photochemical reaction was carried out at 293 K, and observed in situ by single-crystal X-ray diffraction. In the structure of the title compound, the three molecules in the asymmetric unit are arranged to form two potential reaction sites, but only one of these was found to be photoreactive. Since only two out of three molecules in the asymmetric unit take place in the photodimerization reaction, the crystal of the final product contains an ordered arrangement of the photodimer and the unreacted monomer. [Pg.276]

Conducting reactions in nanospace where the dimensions of the reaction vessel are comparable to those of the reactants provides a new tool that can be used to control the selectivity of chemical transformations.1 This dimensional aspect of nano-vessels has been referred to as shape selectivity.2 The effect of spatial confinement can potentially be exerted at all points on the reaction surface but its influence on three stationary points along the reaction coordinate (reactants, transition states, and products) deserve special attention.3,4 (1) Molecular sieving of the reactants, excluding substrates of the incorrect dimension from the reaction site can occur (reactant selectivity). (2) Enzyme-like size selection or shape stabilization of transition states can dramatically influence reaction pathways (transition state selectivity). (3) Finally, products can be selectively retained that are too large to be removed via the nano-vessel openings/pores (product selectivity). [Pg.225]

When the concentration of the inert electrolyte is low, the electrostatic potential at the reaction site differs from that in the bulk and changes with the applied potential. This results in two effects [4] ... [Pg.63]

On application of an overpotential rj, the Gibbs energy of the electron-transfer step changes by eo[r) — Afa rj), where Afa(rj) is the corresponding change in the potential fa at the reaction site. Consequently, rj must be replaced by [rj — Afa r )] in the Butler-Volmer equation (5.13). [Pg.63]

Recall that the situation at the interface between a metal and an electrolyte solution is much more favorable By using a large concentration of supporting electrolyte, we can ensure that the potential at the reaction site differs little from the potential in the bulk of the solution. This does not help at ITIES because for high ionic concentrations the... [Pg.162]

In the expressions of the driving force above, E is, strictly speaking, the potential difference between the electrode and the reaction site. It is usually not exactly the same as the potential difference between the electrode and the solution as illustrated by the potential profile across the double layer represented in Figure 1.6. In other words, E = M — (j)rs rather than E = (f>M, thus resulting in a double-layer effect on the electron transfer kinetics10 that ought to be taken into account. The reaction site is... [Pg.41]

Since the reactant and/or the product are charged species, the fact that the electrical potential in the solution and at the reaction site is not the same leads to the introduction of work terms wr = z.a(P2 for the reactants and w p = (za + n) for products (n = 1 for oxidations, n = — 1 for reductions), which measure the free energy required to bring the reactant and the product, respectively, from the bulk of the solution to the reaction site. [Pg.42]

Soma et al. (12) have generalized the trends for aromatic compound polymerization as follows (1) aromatic compounds with ionization potentials lower than approximately 9.7 eV formg radical cations upon adsorption in the interlayer of transition-metal ion-exchanged montmorillonites, (2) parasubstituted benzenes and biphenyls are sorbed as the radical cations and prevented from coupling reactions due to blockage of the para position, (3) monosubstituted benzenes react to 4,4 -substituted biphenyls which are stably sorbed, (4) benzene, biphenyl, and p-terphenyl polymerized, and (5) biphenyl methane, naphthalene, and anthracene are nonreactive due to hindered access to reaction sites. However, they observed a number of exceptions that did not fit this scheme and these were not explained. [Pg.471]

Earlier suggestions that the two uncoordinated and invariant residues His35 (inaccessible to solvent and covered by polypeptide) and His83 (remote and 13 A from Cu) are, from effects of [H ] on rate constants (and related pKg values), sites for electron transfer may require some re-examination. Thus, it has been demonstrated in plastocyanin studies [50] that a surface protonation can influence the reduction potential at the active site, in which case its effect is transmitted to all reaction sites. In other words, an effect of protonation on rate constants need not necessarily imply that the reaction occurs at the site of protonation. His35 is thought to be involved in pH-dependent transitions between active and inactive forms of reduced azurin [53]. The proximity of... [Pg.187]

Concentration Polarization As a reactant is consumed at the electrode by electrochemical reaction, there is a loss of potential due to the inability of the surrounding material to maintain the initial concentration of the bulk fluid. That is, a concentration gradient is formed. Several processes may contribute to concentration polarization slow diffusion in the gas phase in the electrode pores, solution/dissolution of reactants/products into/out of the electrolyte, or diffusion of reactants/products through the electrolyte to/from the electrochemical reaction site. At practical current densities, slow transport of reactants/products to/from the electrochemical reaction site is a major contributor to concentration polarization ... [Pg.58]

Selenenyl groups can be abstracted from acyl selenides to generate radicals on reaction with stannyl radicals.201 202 203 Normally, some type of stabilization of the potential reaction site is necessary. Among the types of selenides that are generated by selenenyl abstraction are x-sclcncnyl cyanides and a-selenenyl phosphates. [Pg.653]


See other pages where Reaction site potential is mentioned: [Pg.60]    [Pg.519]    [Pg.60]    [Pg.519]    [Pg.493]    [Pg.512]    [Pg.165]    [Pg.109]    [Pg.748]    [Pg.141]    [Pg.80]    [Pg.421]    [Pg.37]    [Pg.100]    [Pg.463]    [Pg.43]    [Pg.63]    [Pg.109]    [Pg.162]    [Pg.453]    [Pg.271]    [Pg.424]    [Pg.170]    [Pg.476]    [Pg.463]    [Pg.173]    [Pg.10]    [Pg.11]    [Pg.120]    [Pg.170]    [Pg.356]    [Pg.673]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Reaction site

© 2024 chempedia.info