Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chlorine propylene oxide

Chlorine cannot be stored economically or moved long distances. International movements of bulk chlorine are more or less limited to movements between Canada and the United States. In 1987, chlorine moved in the form of derivatives was 3.3 million metric tons or approximately 10% of total consumption (3). Exports of ethylene dichloride, vinyl chloride monomer, poly(vinyl chloride), propylene oxide, and chlorinated solvents comprise the majority of world chlorine movement. Countries or areas with a chlorine surplus exported in the form of derivatives include Western Europe, Bra2il, USA, Saudi Arabia, and Canada. Countries with a chlorine deficit are Taiwan, Korea, Indonesia, Vene2uela, South Africa, Thailand and Japan (3). [Pg.478]

Category includes only direct chlorine consumption the majority of consumption is included in Epichlorohydrin, propylene oxide. [Pg.516]

Propylene oxide [75-56-9] is manufactured by either the chlorohydrin process or the peroxidation (coproduct) process. In the chlorohydrin process, chlorine, propylene, and water are combined to make propylene chlorohydrin, which then reacts with inorganic base to yield the oxide. The peroxidation process converts either isobutane or ethylbenzene direcdy to an alkyl hydroperoxide which then reacts with propylene to make propylene oxide, and /-butyl alcohol or methylbenzyl alcohol, respectively. Table 1 Hsts producers of propylene glycols in the United States. [Pg.365]

The chlorohydrin process involves reaction of propylene and chlorine in the presence of water to produce the two isomers of propylene chlorohydrin. This is followed by dehydrochlorination using caustic or lime to propylene oxide and salt. The Dow Chemical Company is the only practitioner of the chlorohydrin process in North America. However, several companies practice the chlorohydrin process at more than 20 locations in Germany, Italy, Bra2il, Japan, Eastern Europe, and Asia. [Pg.136]

Peracid Processes. Peracids, derived from hydrogen peroxide reaction with the corresponding carboxyUc acids in the presence of sulfuric acid and water, react with propylene in the presence of a chlorinated organic solvent to yield propylene oxide and carboxyUc acid (194—196). [Pg.141]

In the chemical industry, titanium is used in heat-exchanger tubing for salt production, in the production of ethylene glycol, ethylene oxide, propylene oxide, and terephthaHc acid, and in industrial wastewater treatment. Titanium is used in environments of aqueous chloride salts, eg, ZnCl2, NH4CI, CaCl2, and MgCl2 chlorine gas chlorinated hydrocarbons and nitric acid. [Pg.110]

Uses. /-Butyl hypochlorite has been found useful in upgrading vegetable oils (273) and in the preparation of a-substituted acryflc acid esters (274) and esters of isoprene halohydrins (275). Numerous patents describe its use in cross-linking of polymers (qv) (276), in surface treatment of mbber (qv) (277), and in odor control of polymer latexes (278). It is used in the preparation of propylene oxide (qv) in high yield with Httle or no by-products (269,279). Fluoroalkyl hypochlorites are useful as insecticides, initiators for polymerizations, and bleaching and chlorinating agents (280). [Pg.475]

Yields of propylene chlorohydrin range from 87—90% with dichloropropane yields of 6—9%. The dichloropropane is not only a yield loss but also represents a disposal problem as few uses are known for this material. Since almost all the propylene chlorohydrin is dehydrochlorinated to propylene oxide with lime or sodium hydroxide, none of the chlorine appears in the final product. Instead, it ends up as dilute calcium or sodium chloride solutions, which usually contain small amounts of propylene glycol and other organic compounds that can present significant disposal problems. [Pg.74]

There have been a number of cell designs tested for this reaction. Undivided cells using sodium bromide electrolyte have been tried (see, for example. Ref. 29). These have had electrode shapes for in-ceU propylene absorption into the electrolyte. The chief advantages of the electrochemical route to propylene oxide are elimination of the need for chlorine and lime, as well as avoidance of calcium chloride disposal (see Calcium compounds, calcium CHLORIDE Lime and limestone). An indirect electrochemical approach meeting these same objectives employs the chlorine produced at the anode of a membrane cell for preparing the propylene chlorohydrin external to the electrolysis system. The caustic made at the cathode is used to convert the chlorohydrin to propylene oxide, reforming a NaCl solution which is recycled. Attractive economics are claimed for this combined chlor-alkali electrolysis and propylene oxide manufacture (135). [Pg.103]

Chapman and co-workers have investigated the nucleophilic displacement of chlorine in various chloronitropyridines by three pyridines. In each of these series of three compounds, an excellent correlation is observed, but, again, longer series would be extremely desirable. Similarly, the nucleophilic attack of a series of four pyridines on propylene oxide follows the Hammett equation with high pre-... [Pg.228]

Many companies have said that if an alternative route to a derivative was economically justifiable that would be used in preference to a chlorine route. This has already had an impact on the technology of choice in some production routes to isocyanates, polycarbonate, propylene oxide and epichlorohydrin. [Pg.28]

Above experience in PVC modification was recently applied to PECH which seems to have more labile (reactive) primary chlorine atom. PECH would be useful in the preparation of poly(propylene oxide) substitut-... [Pg.51]

Bromine, chlorinated solvents, amines, propylene oxide and tetrahydrofuran (THF) can have more or less severe effects at room temperature. Alterations increase when the temperature rises. [Pg.511]

Three equations describe the process. The first involves making the hypochlorous acid by reacting chlorine and water. In the second, the acid reacts with propylene to make chlorohydrin. The dehydirochlorination takes place in the third to give propylene oxide. [Pg.159]

Dehydrochiorination. The removal of chlorine and hydrogen from a molecule to form a chloride and water. Used, for example, as a step in a propylene-to-propylene oxide process. [Pg.397]

The epoxidation of propylene to propylene oxide is a high-volume process, using about 10% of the propylene produced in the world via one of two processes [127]. The oldest technology is called the chlorohydrin process and uses propylene, chlorine and water as its feedstocks. Due to the environmental costs of chlorine and the development of the more-efficient direct epoxidation over Ti02/Si02 catalysts, new plants all use the hydroperoxide route. The disadvantage here is the co-production of stoichiometric amounts of styrene or butyl alcohol, which means that the process economics are dependent on finding markets not only for the product of interest, but also for the co-product The hydroperoxide route has been practiced commercially since 1979 to co-produce propylene oxide and styrene [128], so when TS-1 was developed, epoxidation was looked at extensively [129]. [Pg.387]

There are two important methods for the manufacture of propylene oxide, each accounting for one half the total amount produced. The older method involves chlorohydrin formation from the reaction of propylene with chlorine water. Before 1969 this was the exclusive method. Unlike the analogous procedure for making ethylene oxide from ethylene, which now is obsolete, this method for propylene oxide is still economically competitive. Many old ethylene oxide plants have been converted to propylene oxide synthesis. [Pg.167]

CO is derived from a variety of feedstocks such as petroleum gas, fuel oil, coal, and biomass. The industrial scale production of PO starts from propylene, which is mainly obtained from crude oil. However, due to the high importance of this compound, many pathways from renewable sources have additionally been developed [54]. PP is converted to PO by either hydrochlorination or oxidation [55]. The use of chlorine leads to large amounts of salts as by-products, therefore oxidation methods are more important, such as the co-oxidation of PP using ethylbenzene or isobutene in the presence of air and a catalyst. However, this process is economically dependent on the market share of these by-products, thus new procedures without significant amounts of other side-products have been developed, such as the HPPO (hydrogen peroxide to propylene oxide) process in which propylene is oxidized with hydrogen peroxide to give PO and water [56, 57] (Fig. 14). [Pg.64]

Chlorine (from the Greek chloros for yellow-green ) is the most abundant halogen (0.19 w% of the earth s crust) and plays a key role in chemical processes. The chlor-alkali industry has been in operation since the 1890s and improvements in the technology are still important and noticeable, for example, the transition from the mercury-based technology to membrane cells [60]. Most chlorine produced today is used for the manufacture of polyvinyl chloride, chloroprene, chlorinated hydrocarbons, propylene oxide, in the pulp and paper industry, in water treatment, and in disinfection processes [61]. A summary of typical redox states of chlorine, standard potentials for acidic aqueous media, and applications is given in Scheme 2. [Pg.281]

The formation of epoxides is synthetically a very important transformation. The indirect epoxidation of olefins (see Eq. 7) in the presence of electrogenerated chlorine (or bromine) [95] is a commercial process in which chlorine is recycled and not part of the product. The products such as propylene oxide are key intermediates in many further chemical processes. [Pg.284]

One US plant manufd, since about 1948, Gc starting with petroleum, chlorine and caustic soda. At first a mixt of ethylene- and propylene oxides was obtd and this was treated with Na hypochlorite (obtd from NaOH+Cl2) and then hydrolyzed with NaOH. (Ref 15)... [Pg.121]

In an older version of the synthesis, propylene and chlorine react in an aqueous solution to form propylene chlorohydrin.192-194 The slightly exothermic reaction maintains the 30-40°C reaction temperature to yield isomeric propylene chlorohy-drins (l-chloro-2-propanol/2-chloro-1-propanol = 9 1). The main byproduct is 1,2-dichloropropane formed in amounts up to 10%. The product propylene chlorohydrin then undergoes saponification to propylene oxide with calcium hydroxide or sodium hydroxide. [Pg.302]

Hence, in this work, we report the heterogeneization of this new chiral macrocycle onto micelle-templated silicate (MTS) surface by substitution of chlorine atom of previously grafted 3-chloropropyl chain. After A-alkylation of the tetraazamacrocycle with propylene oxide and metalation with Mn(lI)Cl2, the catalytic performance of the corresponding hybrid materials was evaluated in the heterogeneous enantioselective olefin epoxidation. [Pg.774]

Propylene oxide in the amount of 5000 tons/yr will be made by the chlorohydrin process. The basic feed material is a hydrocarbon mixture containing 90% propylene and the balance propane which does not react. This material is diluted with spent gas from the process to provide a net feed to chlorination which contains 40 mol % propylene. Chlorine gas contains 3% each of air and carbon dioxide as contaminants. [Pg.34]

Chlorination of propylene oxide and epichlorohydrin has been conducted in the presence of sunlight or a suitable substitute, but the course of the reactions remains obscure. Propylene oxide is reported to give a complex mixture of products, two of which are l,3-dichloro-2-propanol and chloroaoetone Epichlorohydrin (Eq. 949) appears to form 1,1 -dichloro- 2,3-epoxypropane initially, and then to react further, giving finally 1,1,2,3,3-pentachloro-2,3-epoxypropane. 10... [Pg.499]


See other pages where Chlorine propylene oxide is mentioned: [Pg.329]    [Pg.477]    [Pg.517]    [Pg.476]    [Pg.136]    [Pg.137]    [Pg.137]    [Pg.103]    [Pg.461]    [Pg.548]    [Pg.43]    [Pg.798]    [Pg.213]    [Pg.185]    [Pg.173]    [Pg.242]    [Pg.159]    [Pg.166]    [Pg.381]    [Pg.83]    [Pg.4]    [Pg.11]    [Pg.447]    [Pg.289]   
See also in sourсe #XX -- [ Pg.146 , Pg.149 ]




SEARCH



Chlorination oxidation

Chlorination oxidative

Chlorine Oxidation

Chlorine oxides

Chlorine oxidizer

Oxidants chlorine

Propylene chlorinated

Propylene oxide

Propylene oxide oxidation

Propylene, chlorination

© 2024 chempedia.info