Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cells undivided

Sodium Perchlorate. The electrochemical oxidation of sodium chlorate is carried out at the anode ia an undivided cell according to the following reaction ... [Pg.67]

It is clear from Table 7 that the undivided cell has considerable power usage savings over the divided cell operation. Also, there are no membrane costs, and cell fabrication is much cheaper. In addition, it was possible to simplify the product recovery in the undivided cell process. [Pg.101]

Asahi also reports an undivided cell process employing a lead alloy cathode, a nickel—steel anode, and an electrolyte composed of an emulsion of 20 wt % of an oil phase and 80 wt % of an aqueous phase (125). The aqueous phase is 10 wt % K HPO, 3 wt % K B O, and 2 wt % (C2H (C4H )2N)2HP04. The oil phase is about 28 wt % acrylonitrile and 50 wt % adiponitrile. The balance of the oil phase consists of by-products and water. The cell operates at a current density of 20 A/dm at 50°C. Circulated across the cathode surface at a superficial velocity of 1.5 m/s is the electrolyte. A 91% selectivity to adiponitrile is claimed at a current efficiency of 90%. The respective anode and cathode corrosion rates are about mg/(Ah). Asahi s improved EHD process is reported to have been commercialized in 1987. [Pg.101]

There have been a number of cell designs tested for this reaction. Undivided cells using sodium bromide electrolyte have been tried (see, for example. Ref. 29). These have had electrode shapes for in-ceU propylene absorption into the electrolyte. The chief advantages of the electrochemical route to propylene oxide are elimination of the need for chlorine and lime, as well as avoidance of calcium chloride disposal (see Calcium compounds, calcium CHLORIDE Lime and limestone). An indirect electrochemical approach meeting these same objectives employs the chlorine produced at the anode of a membrane cell for preparing the propylene chlorohydrin external to the electrolysis system. The caustic made at the cathode is used to convert the chlorohydrin to propylene oxide, reforming a NaCl solution which is recycled. Attractive economics are claimed for this combined chlor-alkali electrolysis and propylene oxide manufacture (135). [Pg.103]

Hg cathode, undivided cell MeOH solvent + LiClC>4... [Pg.962]

The nature of the cathode material is not critical in the Kolbe reaction. The reduction of protons from the carboxylic acid is the main process, so that the electrolysis can normally be conducted in an undivided cell. For substrates with double or triple bonds, however, a platinum cathode should be avoided, as cathodic hydrogenation can occur there. A steel cathode should be used, instead. [Pg.95]

Current world chlorate production (about 700 kilotons per year) is based entirely on an electrochemical method where reactions (15.21) to (15.34) occur simultanously in undivided cells. A small amount of bichromate ions are added to the solution to reduce chlorate losses by rereduction at the cathode these form a thin protective layer at the cathode which passivates the reduction of chlorate and hypochlorite ions. [Pg.279]

When chlor-alkali electrolysis is conducted in an undivided cell with mild-steel cathode, the chlorine generated anodically will react with the alkali produced cathodically, and a solution of sodium hypochlorite NaClO is formed. Hypochlorite ions are readily oxidized at the anode to chlorate ions this is the basis for electrolytic chlorate production. Perchlorates can also be obtained electrochemically. [Pg.323]

Electrocatalysis with nickel-bpy complexes has been shown useful for synthetic applications,202,211 especially when used in combination with the sacrificial anode process in an undivided cell (Equation (45)).207,211 Under these very simple experimental conditions, efficient nickel catalysts can be also generated in the presence of the cheap pyridine ligand.212... [Pg.486]

Heptyl 3-Phenylpropyl Ether [Electrogenerated Acid-Promoted Reduction of an Aldehyde to an Unsymmetrical Ether].333 A mixture of 1-heptanal (1.0 mmol), 3-phenylpropoxytrimethylsilane (1.2 mmol), tetra-n-butylammonium perchlorate (0.1 mmol), and lithium perchlorate (0.1 mmol) was dissolved in CH2CI2 (3 mL) in an undivided cell. The mixture was electrolyzed under constant current (1.67 mA cm-2) with platinum electrodes at ambient temperature. After 5 minutes, dimethylphenylsilane (1.2 mmol) was added drop-wise and the electrolysis was continued (0.06 Faraday/mol). After completion of the reaction, one drop of Et3N was added and the solution was concentrated. The residue was chromatographed on Si02 to give 1-heptyl 3-phenylpropyl... [Pg.122]

The reactions appear to be similar to organometallic synthesis, where the reduction is performed by the metal instead of electricity. However, these reactions have been shown to be essentially different from the corresponding organometallic reactions. This method has valuable advantages. As the anode reaction is controlled, an undivided cell can be used, the reaction occurs in one-step, the conditions are quite simple, and so on. Sibille and Perichon et al. have found that the sacrificial zinc anode is quite effective for trifluoromethylation of aldehydes to form trifluoromethylated alcohols in almost quantitative yields (Eq. 6) [19]. The reaction proceeds via the reduction of Zinc(II) salts, followed by a chemical reaction between the reduced metal, CF3Br, and aldehyde. [Pg.19]

Recently, Uneyama et al. have systematically investigated the anodic generation of CF3 radicals and their utilization (Scheme 7.3) [68-72], They have clarified that trifluoromethyl radicals can be generated almost quantitatively in the oxidation of TFA at 0 °C in an aq. MeOH/Pt system using an undivided cell [70]. They have also found that the trifluoromethylation of electron-deficient olefins can be controlled by the current density, reaction temperature, and the substituents of the olefins. Interestingly, anodic trifluoromethylation of fumar-... [Pg.42]

The preparative electrochemical oxidation of silyl-substituted sulfides results in the cleavage of the C Si bond [36-38]. For example, the anodic oxidation of 1-phenylthio-l-trimethylsilylalkanes takes place smoothly in methanol in an undivided cell equipped with a carbon rod anode and a carbon rod cathode. Although 1-methoxy-l-phenylthioalkanes are formed as the initial products, they are converted into 1,1-dimethoxyalkanes during the course of the reaction (Scheme 8). The electrochemical reaction in the presence of diols such as ethylene glycol affords the corresponding cyclic acetals. [Pg.65]

Preparative electrochemical oxidations of acylsilanes proceed smoothly in methanol in an undivided cell equipped with carbon rod electrodes to give the corresponding methyl esters. The C-Si bond is cleaved and methanol is introduced at the carbonyl carbon (Scheme 22) [16]. [Pg.74]

In the cathodic reduction of activated olefins, chlorosilanes also act as trapping agents of anionic intermediates. Nishiguchi and coworkers described the electrochemical reduction of a,/ -unsaturated esters, nitriles, and ketones in the presence of Me3SiCl using a reactive metal anode (Mg, Zn, Al) in an undivided cell to afford the silylated compounds [78]. This reaction provides a valuable method for the introduction of a silyl group into activated olefins. [Pg.83]

Very recently the use of reactive metal anodes such as Mg, Al, Cu, Hg and Ag electrodes in an undivided cell was found to be quite effective for the formation of Si-Si bonds. [Pg.85]


See other pages where Cells undivided is mentioned: [Pg.520]    [Pg.96]    [Pg.97]    [Pg.99]    [Pg.99]    [Pg.99]    [Pg.215]    [Pg.216]    [Pg.103]    [Pg.537]    [Pg.231]    [Pg.279]    [Pg.168]    [Pg.329]    [Pg.75]    [Pg.333]    [Pg.368]    [Pg.65]    [Pg.37]    [Pg.62]    [Pg.62]    [Pg.63]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.68]    [Pg.68]    [Pg.69]    [Pg.71]    [Pg.75]    [Pg.82]    [Pg.85]    [Pg.85]   
See also in sourсe #XX -- [ Pg.129 , Pg.130 , Pg.214 , Pg.215 , Pg.289 , Pg.290 , Pg.515 , Pg.519 , Pg.522 , Pg.523 , Pg.529 , Pg.530 , Pg.531 , Pg.532 , Pg.533 , Pg.534 , Pg.535 , Pg.536 , Pg.537 , Pg.538 , Pg.539 , Pg.540 , Pg.541 , Pg.542 , Pg.543 , Pg.544 , Pg.545 , Pg.546 ]




SEARCH



© 2024 chempedia.info