Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chloroform chloride

Dissolve 7 g. of pure oleic acid in 30 ml. of dry ethyl chloride (chloroform may be used but is less satisfactory), and ozonise at about —30°. Remove the solvent under reduced pressure, dissolve the residue in 50 ml. of dry methyl alcohol and hydrogenate as for adipic dialdehyde in the presence of 0 5 g. of palladium - calcium carbonate. Warm the resulting solution for 30 minutes with a slight excess of semicarbazide acetate and pour into water. Collect the precipitated semicarbazones and dry the... [Pg.892]

Dichloromethane trichloromethane and tetra chloromethane are widely known by their common names methylene chloride chloroform and carbon tetrachloride respectively... [Pg.167]

Chlorine reacts with saturated hydrocarbons either by substitution or by addition to form chlorinated hydrocarbons and HCl. Thus methanol or methane is chlorinated to produce CH Cl, which can be further chlorinated to form methylene chloride, chloroform, and carbon tetrachloride. Reaction of CI2 with unsaturated hydrocarbons results in the destmction of the double or triple bond. This is a very important reaction during the production of ethylene dichloride, which is an intermediate in the manufacture of vinyl chloride ... [Pg.510]

Potassium salts of the peroxides (27—29) are prepared from the reaction of Caro s acid [7722-86-3] H2SO, with acyl chlorides, chloroformates, or organosulfonyl chlorides in the presence of potassium hydroxide (44). [Pg.126]

Contaminants and by-products which are usually present in 2- and 4-aminophenol made by catalytic reduction can be reduced or even removed completely by a variety of procedures. These include treatment with 2-propanol (74), with aUphatic, cycloaUphatic, or aromatic ketones (75), with aromatic amines (76), with toluene or low mass alkyl acetates (77), or with phosphoric acid, hydroxyacetic acid, hydroxypropionic acid, or citric acid (78). In addition, purity may be enhanced by extraction with methylene chloride, chloroform (79), or nitrobenzene (80). [Pg.311]

The heavy metal salts, ia contrast to the alkah metal salts, have lower melting points and are more soluble ia organic solvents, eg, methylene chloride, chloroform, tetrahydrofiiran, and benzene. They are slightly soluble ia water, alcohol, ahphatic hydrocarbons, and ethyl ether (18). Their thermal decompositions have been extensively studied by dta and tga (thermal gravimetric analysis) methods. They decompose to the metal sulfides and gaseous products, which are primarily carbonyl sulfide and carbon disulfide ia varying ratios. In some cases, the dialkyl xanthate forms. Solvent extraction studies of a large number of elements as their xanthate salts have been reported (19). [Pg.361]

From Boron Halides. Using boron haUdes is not economically desirable because boron haUdes are made from boric acid. However, this method does provide a convenient laboratory synthesis of boric acid esters. The esterification of boron haUdes with alcohol is analogous to the classical conversion of carboxyUc acid haUdes to carboxyUc esters. Simple mixing of the reactants at room temperature or below ia a solvent such as methylene chloride, chloroform, pentane, etc, yields hydrogen haUde and the borate ia high yield. [Pg.215]

Chemical initiation generates organic radicals, usually by decomposition of a2o (11) or peroxide compounds (12), to form radicals which then react with chlorine to initiate the radical-chain chlorination reaction (see Initiators). Chlorination of methane yields all four possible chlorinated derivatives methyl chloride, methylene chloride, chloroform, and carbon tetrachloride (13). The reaction proceeds by a radical-chain mechanism, as shown in equations 1 through. Chain initiation... [Pg.508]

The physical piopeities of ethyl chloiide aie hsted in Table 1. At 0°C, 100 g ethyl chloride dissolve 0.07 g water and 100 g water dissolve 0.447 g ethyl chloride. The solubihty of water in ethyl chloride increases sharply with temperature to 0.36 g/100 g at 50°C. Ethyl chloride dissolves many organic substances, such as fats, oils, resins, and waxes, and it is also a solvent for sulfur and phosphoms. It is miscible with methyl and ethyl alcohols, diethyl ether, ethyl acetate, methylene chloride, chloroform, carbon tetrachloride, and benzene. Butane, ethyl nitrite, and 2-methylbutane each have been reported to form a binary azeotrope with ethyl chloride, but the accuracy of this data is uncertain (1). [Pg.1]

Chloroethanol, see Ethylene chlorohydrin Chloroethylene, see Vinyl chloride Chloroform (trichloromethane)... [Pg.335]

Chemical Designations - Synor ms Carbobenzoxy Chloride Chloroformic Acid, Benzyl Ester Benzylcarbonyl Chloride Benzyl Chlorocarbonate Chemical Formula C HjCH OCOCl. Ohservahle Characteristics - Physical State (as normally sh ed) Liquid Color. Colorless Odor. Irritating sharp, penetrating. [Pg.46]

Organic chemicals made directly from chlorine include derivatives of methane methyl chloride, methylene chloride, chloroform, carbon tetrachloride, chlorobenzene ortho- and para-dichlorobenzenes ethyl chloride, and ethylene chloride. [Pg.266]

The Nenitzescu process is presumed to involve an internal oxidation-reduction sequence. Since electron transfer processes, characterized by deep burgundy colored reaction mixtures, may be an important mechanistic aspect, the outcome should be sensitive to the reaction medium. Many solvents have been employed in the Nenitzescu reaction including acetone, methanol, ethanol, benzene, methylene chloride, chloroform, and ethylene chloride however, acetic acid and nitromethane are the most effective solvents for the process. The utility of acetic acid is likely the result of its ability to isomerize the olefinic intermediate (9) to the isomeric (10) capable of providing 5-hydroxyindole derivatives. The reaction of benzoquinone 4 with ethyl 3-aminocinnamate 35 illustrates this effect. ... [Pg.150]

The salts of 3-acetyl-18/3-glycyrrhetinic acid can be prepared by reaction between 3-acetyl-18/3-glycyrrhetinic acid and an aluminum alcohoiate. Preferably lower alcoholates are used, i.e., alcoholates in which the alkoxy group or groups have from one to four carbon atoms. The salification reaction may be carried out at room temperature or at an elevated temperature in conventional fashion, preferably in the presence of organic solvents. As organic solvents may be used alcohols, ethers, ketones, chlorinated solvents (methylene chloride, chloroform) ethyl acetate, etc. [Pg.19]

Despite several attractive features in this method of direct halogen introduction and the obvious applications in the synthesis of deoxy sugars, its uses have not been further exploited by other groups of workers. Some new related methods have become available which reportedly eliminate the difficulties previously encountered such as rearrangement, unreactivity due to steric hindrance, and phosphonate ester formation. The reaction is based on the observation (28) that triethylphosphine reacts with ethanol and carbon tetrachloride to give ethyl chloride, chloroform, and triethylphosphite. In a new adaptation (76, 77) of this... [Pg.185]

Among methylene chloride, chloroform, carbon tetrachloride, and hexane, fast reaction rate was observed in methylene chloride or chloroform solvents, but slow... [Pg.156]

Substances Antimony(III) chloride Chloroform Carbon tetrachloride... [Pg.605]

Dilling WL, Tefertiller NB, Kallos GJ. 1975. Evaporation rates and reactivities of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions. Environmental Science and Technology 9 833-838. [Pg.261]

Chlorine-enhancement may offer a partial solution. The addition of the chlorinated olefin TCE, PCE, or TCP to air/contaminant mixtures has recently been demonstrated to increase quantum yields substantially [1, 2, 6]. We recently have extended this achievement [3], to demonstrate TCE-driven high quantmn efficiency conversions at a reference feed concentration of 50 mg contaminant/m air not only for toluene but also for other aromatics such as ethylbenzene and m-xylene, as well as the volatile oxygenates 2-butanone, acetaldehyde, butsraldehyde, 1-butanol, methyl acrylate, methyl-ter-butyl-ether (MTBE), 1,4 dioxane, and an alkane, hexane. Not 1 prospective contaminants respond positively to TCE addition a conventional, mutual competitive inhibition was observed for acetone, methanol, methylene chloride, chloroform, and 1,1,1 trichloroethane, and the benzene rate was altogether unaffected. [Pg.436]

The most critical decision to be made is the choice of the best solvent to facilitate extraction of the drug residue while minimizing interference. A review of available solubility, logP, and pK /pKb data for the marker residue can become an important first step in the selection of the best extraction solvents to try. A selected list of solvents from the literature methods include individual solvents (n-hexane, " dichloromethane, ethyl acetate, acetone, acetonitrile, methanol, and water ) mixtures of solvents (dichloromethane-methanol-acetic acid, isooctane-ethyl acetate, methanol-water, and acetonitrile-water ), and aqueous buffer solutions (phosphate and sodium sulfate ). Hexane is a very nonpolar solvent and could be chosen as an extraction solvent if the analyte is also very nonpolar. For example, Serrano et al used n-hexane to extract the very nonpolar polychlorinated biphenyls (PCBs) from fat, liver, and kidney of whale. One advantage of using n-hexane as an extraction solvent for fat tissue is that the fat itself will be completely dissolved, but this will necessitate an additional cleanup step to remove the substantial fat matrix. The choice of chlorinated hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride should be avoided owing to safety and environmental concerns with these solvents. Diethyl ether and ethyl acetate are other relatively nonpolar solvents that are appropriate for extraction of nonpolar analytes. Diethyl ether or ethyl acetate may also be combined with hexane (or other hydrocarbon solvent) to create an extraction solvent that has a polarity intermediate between the two solvents. For example, Gerhardt et a/. used a combination of isooctane and ethyl acetate for the extraction of several ionophores from various animal tissues. [Pg.305]

Nitrobenzoylimidazole, however, forms with HC1 a sparingly soluble salt that reacts at room temperature only slowly. At higher temperature / -nitrobenzoyl chloride can be readily obtained (refluxing 1,2-dichloroethane). Analogous preparations are those of Af-palmitoyl chloride and caproyl chloride (chloroform, 55-60 °C). [Pg.297]

VOCs (acetone, methylene chloride, chloroform, MEK, chloromethane, trichloroethane) Air/water... [Pg.877]


See other pages where Chloroform chloride is mentioned: [Pg.94]    [Pg.505]    [Pg.514]    [Pg.519]    [Pg.519]    [Pg.523]    [Pg.523]    [Pg.524]    [Pg.1453]    [Pg.327]    [Pg.411]    [Pg.223]    [Pg.464]    [Pg.220]    [Pg.221]    [Pg.81]    [Pg.403]    [Pg.143]    [Pg.221]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



9-Fluorenylmethyl chloroformate chloride

Benzyl chloroformate chloride

Chloromethyl chloroformate chloride

Ferric chloride in addition of chloroform

Ferric chloride in addition of chloroform to olefins

Hydrogen Chloride in Chloroform

Isotherm adsorption chloroform, butyl chloride

© 2024 chempedia.info