Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemicals chlorinated hydrocarbons

Although we can measure the amount of chloroform in the air that you breathe out, and in blood, urine, and body tissues, we have no reliable test to determine how much chloroform you have been exposed to or whether you will experience any harmful health effects. The measurement of chloroform in body fluids and tissues may help to determine if you have come into contact with large amounts of chloroform. However, these tests are useful only a short time after you are exposed to chloroform because it leaves the body quickly. Because it is a breakdown product of other chemicals (chlorinated hydrocarbons), chloroform in your body might also indicate that you have come into contact with those other chemicals. Therefore, small amounts of chloroform in the body may indicate exposure to these other chemicals and may not indicate low chloroform levels in the environment. From blood tests to determine the amount of liver enzymes, we can tell whether the liver has been damaged, but we cannot tell whether the liver damage was caused by chloroform. [Pg.18]

Hydrogen chloride is produced by the direct reaction of hydrogen and chlorine, by reaction of metal chlorides and acids, and as a by-product from many chemical manufacturing processes such as chlorinated hydrocarbons. [Pg.445]

In the chemical industry, titanium is used in heat-exchanger tubing for salt production, in the production of ethylene glycol, ethylene oxide, propylene oxide, and terephthaHc acid, and in industrial wastewater treatment. Titanium is used in environments of aqueous chloride salts, eg, ZnCl2, NH4CI, CaCl2, and MgCl2 chlorine gas chlorinated hydrocarbons and nitric acid. [Pg.110]

Aerobic, Anaerobic, and Combined Systems. The vast majority of in situ bioremediations ate conducted under aerobic conditions because most organics can be degraded aerobically and more rapidly than under anaerobic conditions. Some synthetic chemicals are highly resistant to aerobic biodegradation, such as highly oxidized, chlorinated hydrocarbons and polynuclear aromatic hydrocarbons (PAHs). Examples of such compounds are tetrachloroethylene, TCE, benzo(a)pyrene [50-32-8] PCBs, and pesticides. [Pg.170]

Chlorination of various hydrocarbon feedstocks produces many usehil chlorinated solvents, intermediates, and chemical products. The chlorinated derivatives provide a primary method of upgrading the value of industrial chlorine. The principal chlorinated hydrocarbons produced industrially include chloromethane (methyl chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), chloroethene (vinyl chloride monomer, VCM), 1,1-dichloroethene (vinylidene chloride), 1,1,2-trichloroethene (trichloroethylene), 1,1,2,2-tetrachloroethene (perchloroethylene), mono- and dichloroben2enes, 1,1,1-trichloroethane (methyl chloroform), 1,1,2-trichloroethane, and 1,2-dichloroethane (ethylene dichloride [540-59-0], EDC). [Pg.506]

Acetjiene has found use as a feedstock for production of chlorinated solvents by reaction with hydrogen chloride or chlorine (6). However, because of safety concerns and the lower price of other feedstock hydrocarbons, very Htfle acetylene is used to produce chlorinated hydrocarbons in the United States (see Acetylene-derived chemicals). [Pg.506]

The resistance to heat and aging of optimized EPM/EPDM vulcanizates is better than that of SBR and NR. Peroxide-cured EPM can, for instance, be exposed for 1000 h at 150°C without significant hardening. Particularly noteworthy is the ozone resistance of EPM/EPDM vulcanizates. Even after exposure for many months to ozone-rich air of 100 pphm, the vulcanizates will not be seriously harmed. EPM/EPDM vulcanizates have an excellent resistance to chemicals, such as dilute acids, alkaUes, alcohol, etc. This is in contrast to the resistance to aUphatic, aromatic, or chlorinated hydrocarbons. EPM/EPDM vulcanizates swell considerably in these nonpolar media. [Pg.505]

Phosgenes Thermal decomposition of chlorinated hydrocarbons, degreasing, manufacture of dyestuffs, pharmaceuticals, organic chemi- Metal fabrication, heavy chemicals Damage capable of leading to pulmonary edema, often delayed... [Pg.2174]

Polypropylene has a chemical resistance about the same as that of polyethylene, but it can be used at 120°C (250°F). Polycarbonate is a relatively high-temperature plastic. It can be used up to 150°C (300°F). Resistance to mineral acids is good. Strong alkalies slowly decompose it, but mild alkalies do not. It is partially soluble in aromatic solvents and soluble in chlorinated hydrocarbons. Polyphenylene oxide has good resistance to ahphatic solvents, acids, and bases but poor resistance to esters, ketones, and aromatic or chlorinated solvents. [Pg.2458]

Asphalt Asphalt is used as a flexible protective coating, as a bricklining membrane, and as a chemical-resisting floor covering and road surface. Resistant to acids and bases, alphalt is soluble in organic solvents such as ketones, most chlorinated hydrocarbons, and aromatic hydrocarbons. [Pg.2463]

Chlorosulfouated polyethylene (Hypalou) 250 Excellent resistance to oxidizing chemicals, ozone, weathering. Relatively good resistance to oils, grease. Poor resistance to aromatic or chlorinated hydrocarbons. Good mechanical properties. [Pg.2474]

The fluids have reasonably good chemical resistance but are attacked by concentrated mineral acids and alkalis. They are soluble in aliphatic, aromatic and chlorinated hydrocarbons, which is to be expected from the low solubility parameter of 14.9 MPa. They are insoluble in solvents of higher solubility parameter such as acetone, ethylene glycol and water. They are themselves very poor solvents. Some physical properties of the dimethylsilicone fluids are summarised in Table 29.2. [Pg.825]

The specific gravities (s.g.) of liquid chemicals vary widely, e.g. for the majority of hydrocarbon fuels s.g. <1.0 but for some natural oils and fats, chlorinated hydrocarbons, s.g. >1.0. Density is generally reduced by any increase in temperature. As a result ... [Pg.49]

Case 2 - The Hyde Park Landfill site, located in an industrial complex in the extreme northwest corner of Niagara, New York, was used from 1953 to 1975 as a disposal site for an estimated 80,000 tons of chemical waste, including chlorinated hydrocarbons. A compacted clay cover was installed in 1978 over the landfill and a tile leachate collection system was installed in 1979. Hazardous compounds such as ortho-, meta- and para-chlorobenzoic acid toluene ortho- and meta-chlorotoluene 3,4-dichlorotoluene and 2,6-dichlorotoluene were detected in the leachate (Irvine et al., 1984). Since 1979, the existing leachate treatment system has used activated carbon as the technology for removing organic carbon. Although... [Pg.155]

Carbon dioxide, carbon tetrachloride, and other chlorinated hydrocarbons. (Also prohibit potassium, water, foam and dry chemical on fires involving these metals—dry sand should be available). [Pg.1031]

Liver cancer can also be a consequence of exposure to hepatotoxic chemicals. Natural hepatocarcinogens include fungal aflatoxins. Synthetic hepato-carcinogens include nitrosoamines, certain chlorinated hydrocarbons, polychlorinated biphenyls (PCBs), chloroform, carbon tetrachloride, dimethyl-benzanthracene, and vinyl chloride.Table 5.15 lists the chemical compounds that induce liver cancer or cirrhosis in experimental animals or... [Pg.300]

Chemical adhesion. Chlorination is produced in the trans C=C bonds of butadiene creating chlorinated hydrocarbon and other C—Cl moieties.According to Table 27.2, C—Cl... [Pg.765]

CHLORINATED HYDROCARBONS Hydrocarbons containing chlorine atoms, e.g. trichloroethylene. Some of these chemicals accumulate in the food chain and do not readily degrade. Some plastics which contain certain chlorinated hydrocarbons release dioxins into the air, when burnt at low temperatures. [Pg.12]

Trichloroethylene may occur in drinking water along with other chlorinated hydrocarbons, so effects of these chemicals in combination are of interest to public health. Hepatotoxicity, as measured by plasma enzyme activity, was increased synergistically in rats by oral administration of carbon tetrachloride combined with trichloroethylene (Borzelleca et al. 1990). In addition, synergistic effects were implicated in a 3-day study in... [Pg.172]

In a comprehensive study of trichloroethylene emission sources from industry conducted for EPA, the major source was degreasing operations, which eventually release most of the trichloroethylene used in this application to the atmosphere (EPA 1985e). Degreasing operations represented the largest source category of trichloroethylene emissions in 1983, accounting for about 91% of total trichloroethylene emissions. Other emission sources include relatively minor releases from trichloroethylene manufacture, manufacture of other chemicals (similar chlorinated hydrocarbons and polyvinyl chloride), and solvent evaporation losses from adhesives, paints, coatings, and miscellaneous uses. [Pg.204]

Malins DC, BB McCain, DW Brown, MS Myers, MM Krahn, S-L Chan (1987) Toxic chemicals, including aromatic and chlorinated hydrocarbons and their derivatives, and liver lesions in white croaker (Genyonemus lineatus) from the vicinity of Los Angeles. Environ Sci Technol 21 765-770. [Pg.101]


See other pages where Chemicals chlorinated hydrocarbons is mentioned: [Pg.2419]    [Pg.314]    [Pg.396]    [Pg.437]    [Pg.295]    [Pg.467]    [Pg.95]    [Pg.262]    [Pg.165]    [Pg.532]    [Pg.273]    [Pg.2461]    [Pg.435]    [Pg.59]    [Pg.273]    [Pg.5]    [Pg.427]    [Pg.429]    [Pg.408]    [Pg.13]    [Pg.10]    [Pg.606]    [Pg.272]    [Pg.1363]    [Pg.94]    [Pg.150]    [Pg.42]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Chemical hydrocarbons

Chemicals chlorinated

Chemicals chlorine

Chlorinated hydrocarbons chemical classes

Hydrocarbons, chlorination

© 2024 chempedia.info