Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical techniques ozone

The analytic principles that have been applied to accumulate air quality data are colorimetry, amperometry, chemiluminescence, and ultraviolet absorption. Calorimetric and amperometric continuous analyzers that use wet chemical techniques (reagent solutions) have been in use as ambient-air monitors for many years. Chemiluminescent analyzers, which measure the amount of chemiluminescence produced when ozone reacts with a gas or solid, were developed to provide a specific and sensitive analysis for ozone and have also been field-tested. Ultraviolet-absorption analyzers are based on a physical detection principle, the absorption of ultraviolet radiation by a substance. They do not use chemical reagents, gases, or solids in their operation and have only recently been field-tested. Ultraviolet-absorption analyzers are ideal as transfer standards, but, as discussed earlier, they have limitations as air monitors, because aerosols, mercury vapor, and some hydrocarbons could, interfere with the accuracy of ozone measurements made in polluted air. [Pg.262]

Historically, atmospheric compounds were measured using wet chemical techniques. For example, ozone was measured by bubbling air through a solution containing iodide, and the I2 formed was measured using wet chemical techniques. Such methods were used as early as the mid-1800s to measure ozone in a number of locations worldwide, providing data on the increase in its concentrations since then, discussed in Chapter 14.B.2d. [Pg.547]

The following sections discuss the primary biocide used today, chlorine, and alternative physical and chemical techniques to address membrane biofouling control. The most common alternative techniques examined here include chloramine, chlorine dioxide, ozone, UV, and non-oxidizing biocides such as DBNPA and isothiazolone. Table 8.12 summarizes advantages and limitations of these techniques (adapted from Kim, 2009). It is important to note that some of these biocides/disinfectants can contact the membranes, and others must be removed or destroyed before the water is introduced to the membrane system itself. [Pg.212]

In contrast to americium, the oxidation of Cm(iii) to Cm(iv) is achieved only with the strongest oxidizing agents and only one report [48] claims evidence for an oxidation state greater than iv. Transient divalent and tetravalent states have been observed in aqueous perchlorate media using pulse radiolysis techniques [49], Attempts have been made to induce Cm(iii)-Cm(iv) oxidation chemically (using ozone [50] and perxenate [51]) or electrochemically [52], These early attempts have failed, an effect clearly not attributable solely to radiolytic reduction. [Pg.97]

Hundreds of chemical species are present in urban atmospheres. The gaseous air pollutants most commonly monitored are CO, O3, NO2, SO2, and nonmethane volatile organic compounds (NMVOCs), Measurement of specific hydrocarbon compounds is becoming routine in the United States for two reasons (1) their potential role as air toxics and (2) the need for detailed hydrocarbon data for control of urban ozone concentrations. Hydrochloric acid (HCl), ammonia (NH3), and hydrogen fluoride (HF) are occasionally measured. Calibration standards and procedures are available for all of these analytic techniques, ensuring the quality of the analytical results... [Pg.196]

Tonnage of air emissions, water emissions and liquid and solid effluent and tonnage of hazardous materials released into the environment. These two measures are related to one another. However, the first measure relates the total effluent, including nonpolluting materials. The second measure looks only at the tonnage of hazardous materials contained in the total effluent. Both measures can be important indicators. For example, for solid waste it is important to know the total volume of material for disposal and different upstream treatment techniques may affect the total volume. However, for ozone depleting chemicals, only the quantity of these gases is important and other components such as water vapor may be irrelevant. [Pg.126]

Intensive technologies are derived from the processes used for the treatment of potable water. Chemical methods include chlorination, peracetic acid, ozonation. Ultra-violet irradiation is becoming a popular photo-biochemical process. Membrane filtration processes, particularly the combination microfiltration/ultrafiltra-tion are rapidly developing (Fig. 3). Membrane bioreactors, a relatively new technology, look very promising as they combine the oxidation of the organic matter with microbial decontamination. Each intensive technique is used alone or in combination with another intensive technique or an extensive one. Extensive... [Pg.100]

Here a chemical reaction produces a molecule with electrons in an excited state. Upon decay to the ground state the liberated radiation is detected. One such example is the reaction between ozone and nitric oxide to form nitrogen dioxide emitting radiation in the near infra-red in the 0.5-3/t region. The technique flnds use for measuring nitric oxide in ambient air or stack emissions. [Pg.309]

There are a few reports on the combined application of ultrasound and ultraviolet light (UV) for the destruction of chemical pollutants. A study of the oxidation of humic acid and trihalomethane precursors with ozone revealed that the most effective destruction of the organic carbon compounds was achieved when both uv and ultrasound were used in combination with ozonation [35]. In other cases e. g. the removal of 1,1,1-tri-chloroethane from aqueous solutions, the combined application of ultrasound and UV proved to be more efficient than the use of either technique individually [36]. [Pg.142]

Detection techniques. Detection techniques for surface-based measurements of ozone include (1) UV absorption at 254 nm (2) chemiluminescence on reaction with NO (or ethene) (3) DOAS (4) TDLS and (5) wet chemical methods, mainly those involving the oxidation of I to 12 and measurement of the I2 colori-metrically or coulometrically. The wet chemical method and the principles behind DOAS and TDLS were discussed earlier and are not treated further here. [Pg.583]

Supercritical CO2 at temperatures of 31-50 °C and pressures of about 10 MPa is now widely used as a nontoxic extractant of excess fats from foodstuffs and in decaffeinating coffee, but its largest scale future use is likely to be the enhancement of recovery of oil that cannot be extracted from wells by conventional techniques. Supercritical CO2 is finding increasing favor as a solvent for chemical syntheses, for example, in the radical-promoted polymerization of fluoroacrylic monomers in homogeneous solution, for which ozone layer-destroying chlorofluorocarbons had been the only effective solvents previously.210... [Pg.158]

These factors have led researchers to examine novel methods for tire degradation of these contaminants, including liquid-phase photocatalytic oxidation. The treatment of wastewaters contaminated with agents like chlorinated aromatics has also prompted research into the optimum methods of integrating chemical oxidation techniques with existing water treatment methods, particularly biological treatment and ozonation techniques [37],... [Pg.252]

Oftentimes water is further purified using deionization or reverse osmosis to meet the requirements for chemical processing. There must be specifications for the quality of this purified water and periodic testing to demonstrate conformance. The water fed to these operations must also be of potable quality unless the purified water is used for noncontact purposes as discussed above. If the purified water is stored prior to use, it must be stored so as to prevent the build up of microbial organisms. There are many techniques suitable to control microbes such as treatment with ultraviolet light or ozone and circulation. Whatever control method is used, it should be demonstrated that it effectively prevents microbial build-up. [Pg.378]

Whenever a superficial modification is intended, keeping the graft copolymer in the same state of dispersion, special techniques can be employed, either creating active centers by high or low energy irradiation, or by chemical reactions with ozone, chlorine, bromine, dinitrogen trioxide or other reagents. [Pg.98]


See other pages where Chemical techniques ozone is mentioned: [Pg.82]    [Pg.780]    [Pg.296]    [Pg.704]    [Pg.235]    [Pg.2113]    [Pg.53]    [Pg.526]    [Pg.195]    [Pg.690]    [Pg.985]    [Pg.369]    [Pg.535]    [Pg.94]    [Pg.481]    [Pg.77]    [Pg.350]    [Pg.302]    [Pg.256]    [Pg.166]    [Pg.78]    [Pg.37]    [Pg.312]    [Pg.196]    [Pg.572]    [Pg.74]    [Pg.76]    [Pg.624]    [Pg.1206]    [Pg.547]    [Pg.737]    [Pg.64]    [Pg.211]    [Pg.624]    [Pg.232]    [Pg.61]   
See also in sourсe #XX -- [ Pg.221 , Pg.222 ]




SEARCH



Chemical ozone

Chemical techniques

© 2024 chempedia.info