Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical structures, application related

The ease of reduction of a vat dye depends on its chemical structure in relation to the reducing power of the agent selected. In practice this question is seldom critical because the reduction potential developed by a typical reducing agent is low enough to permit the reduction of all vat dyes of practical interest. Indeed, such dyes would never have been exploited commercially if they had not responded effectively to reduction under conventional conditions of application. [Pg.106]

The above-written relations are applicable to all linear polymers, whatever their chemical structure. The relations are valid for molecular length M and concentration c, for which inequality (117) is true. However, the coefficients of proportionality in formulae (119) are the individual characteristics of polymers. They must be estimated empirically. Note that the argument of the functions X and B can be excluded, so that one has the relation... [Pg.188]

Each volume will be thematic, dealing with a specific and related subject that will cover fundamental, basic aspects including synthesis, isolation, purification, physical and chemical properties, stability and reactivity, reactions involving mechanisms, intra- and intermolecular transformations, intra- and intermolecular rearrangements, applications as medicinal agents, biological and biomedical studies, pharmacological aspects, applications in material science, and industrial and structural applications. [Pg.9]

Applications MALDI-ToFMS is at its best as a rapid screening technique for quick identification of known additives. However, this screening is rendered slightly more complicated by the fact that MALDI-ToFMS spectra of pure additives and of additives in the presence of excess macromolecules are not always identical (matrix effect) [55]. For unknown additives, the relation MALDI-ToFMS spectrum-chemical structure is not easily established, and the use of FD or MALDI-MS/MS is then needed. As MALDI-MS shows a sensitivity difference for the various additives, it cannot easily quantify them unless the analytes are very similar. For differentiation of additives with the same mass number (e.g. Tinuvin 315 and Cyasorb UV3638 with m/z = 368) high resolution is required, as provided by delayed extraction MALDI-ToFMS. [Pg.703]

This second volume of the book collects together a remarkable quantity and variety of factual information linking the application properties of auxiliary products in textile coloration and related processes to as much as is known of the chemical structure of these agents. The environmental impact of auxiliary products has become of major importance and developments during the 1990s have necessitated substantial modification and expansion of the text of this volume. The opportunity has also been taken to highlight novel chemical types of auxiliaries that are under evaluation to overcome or avoid many of the drawbacks shown by traditional products. Thus the two volumes of this Second Edition are now approximately equal in size, whereas in the 1990 edition Volume 2 was only about half as big as its sibling. [Pg.6]

The linear and nonlinear optical properties of one-dimensional conjugated polymers contain a wealth of information closely related to the structure and dynamics of the ir-electron distribution and to their interaction with the lattice distorsions. The existing values of the nonlinear susceptibilities indicate that these materials are strong candidates for nonlinear optical devices in different applications. However their time response may be limited by the diffusion time of intrinsic conjugation defects and the electron-phonon coupling. Since these defects arise from competition of resonant chemical structures the possible remedy is to control this competition without affecting the delocalization. The understanding of the polymerisation process is consequently essential. [Pg.183]

Knowledge-based methods are those based on the application of certain rules to describe the metabolism. These rules could be defined as chemical reactions relating structure and biotransformations to predict the metabolic fate of a query chemical structure, as in the Meteor approach [26], or alternatively they could be obtained by fragment analysis of a metabolic database as performed in the SPORCalc (Substrate Product Occurrence Ratio Calculator) system [27]. [Pg.251]

The majority of application-related work exploiting the visible PL from PS is aimed at the fabrication of electroluminescent solid-state devices. Only a few other applications of the PL of PS, e.g. the use of luminescent PS for fluorescent labels in biosensing [Akl] or for chemical sensing [Le26], have been proposed. This section therefore focuses on PS-based EL devices. Note that EL from porous structures using wet contacts is discussed in Section 7.4. [Pg.230]

This chapter illustrates possible applications of capillary electrophoresis in impurity profiling. Due to the large peak capacity of the technique, it is extremely well suited to separate the main drug compound from its possible impurities that often have a very related chemical structure. Moreover, the high efficiencies obtained, as well as the low reagent consumption make it a viable alternative to liquid chromatography in many cases of drug analysis. [Pg.259]

To overcome this weakness, we are developing a quantitative structure-activity strategy that is conceptually applicable to all chemicals. To be applicable, at least three criteria are necessary. First, we must be able to calculate the descriptors or Independent variables directly from the chemical structure and, presumably, at a reasonable cost. Second, the ability to calculate the variables should be possible for any chemical. Finally, and most importantly, the variables must be related to a parameter of Interest so that the variables can be used to predict or classify the activity or behavior of the chemical (j ) One important area of research is the development of new variables or descriptors that quantitatively describe the structure of a chemical. The development of these indices has progressed into the mathematical areas of graph theory and topology and a large number of potentially valuable molecular descriptors have been described (7-9). Our objective is not concerned with the development of new descriptors, but alternatively to explore the potential applications of a group of descriptors known as molecular connectivity indices (10). [Pg.149]

Freeze concentration involves the concentration of an aqueous solution by partial freezing and subsequent separation of the resulting ice crystals. It is considered to be one of the most advantageous concentration processes because of the many positive characteristics related with its application. Concentration processes such as evaporation or distillation usually result in removal of volatiles responsible for arom in addition the heat addition in these processes causes a breakdown in the chemical structure that affects flavor characteristics and nutritive properties. In contrast freeze concentration is capable of concentrating various comestible liquids without appreciable change in flavor, aroma, color or nutritive value (1.2.3) The concentrate contains almost all the original amounts of solutes present in the liquid food. [Pg.364]

The major oestrogen preparations used medically are outlined in Table 1.12, and their chemical structure is illustrated in Figure 1.3. The widest clinical application of oestrogens relate to their use as oral contraceptives. Most such contraceptive pills contain an oestrogen in combination with a progestin (discussed later). [Pg.16]

Ab initio and semiempirical molecular orbital (MO) model calculations have become an efficient way to predict chemical structures and vibrational (i.e., Raman scattering and IR emission) spectra. We and others have used such approaches to better understand certain features of fhe specfra, as explained in the following. The basic principles underlying ab initio model calculations have been described in many textbooks and papers (see for example Refs. 44,47,48). Applications in relation to ILs and similar systems have also been reported, as discussed later. [Pg.312]


See other pages where Chemical structures, application related is mentioned: [Pg.4]    [Pg.54]    [Pg.375]    [Pg.27]    [Pg.5]    [Pg.166]    [Pg.163]    [Pg.159]    [Pg.322]    [Pg.21]    [Pg.267]    [Pg.145]    [Pg.162]    [Pg.303]    [Pg.106]    [Pg.3]    [Pg.1008]    [Pg.2]    [Pg.150]    [Pg.203]    [Pg.217]    [Pg.32]    [Pg.6]    [Pg.478]    [Pg.90]    [Pg.113]    [Pg.99]    [Pg.173]    [Pg.155]    [Pg.34]    [Pg.47]    [Pg.13]    [Pg.246]    [Pg.80]    [Pg.186]   
See also in sourсe #XX -- [ Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 ]




SEARCH



Applications structure

Related Structures

© 2024 chempedia.info