Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical spectrophotometry

J. C. Travis and G. W. Kramer, NIST-traceable-reference-material optical filters program for chemical spectrophotometry, Spectroscopy, 14(2), 1999. [Pg.172]

Relaxation kinetics may be monitored in transient studies tlirough a variety of metliods, usually involving some fonn of spectroscopy. Transient teclmiques and spectrophotometry are combined in time resolved spectroscopy to provide botli tire stmctural infonnation from spectral measurements and tire dynamical infonnation from kinetic measurements that are generally needed to characterize tire mechanisms of relaxation processes. The presence and nature of kinetic intennediates, metastable chemical or physical states not present at equilibrium, may be directly examined in tliis way. [Pg.2946]

Selectivity Selectivity is rarely a problem in molecular absorption spectrophotometry. In many cases it is possible to find a wavelength at which only the analyte absorbs or to use chemical reactions in a manner such that the analyte is the only species that absorbs at the chosen wavelength. When two or more species contribute to the measured absorbance, a multicomponent analysis is still possible, as shown in Example 10.6. [Pg.412]

Theoretical Models of the Response Surface Mathematical models for response surfaces are divided into two categories those based on theory and those that are empirical. Theoretical models are derived from known chemical and physical relationships between the response and the factors. In spectrophotometry, for example, Beer s law is a theoretical model relating a substance s absorbance. A, to its concentration, Ca... [Pg.675]

Mineral and Chemical Composition. X-ray diffraction is used to determine the mineral composition of an Mg(OH)2 sample. Induced coupled plasma (icp) spectrophotometry is used to measure the atomic concentrations present in a sample. X-ray fluorescence analysis is another comparative instmmental method of determining chemical composition. [Pg.349]

Only slightly less accurate ( 0.3—0.5%) and more versatile in scale are other titration techniques. Plutonium maybe oxidized in aqueous solution to PuO " 2 using AgO, and then reduced to Pu" " by a known excess of Fe", which is back-titrated with Ce" ". Pu" " may be titrated complexometricaHy with EDTA and a colorimetric indicator such as Arsenazo(I), even in the presence of a large excess of UO " 2- Solution spectrophotometry (Figs. 4 and 5) can be utilized if the plutonium oxidation state is known or controlled. The spectrophotometric method is very sensitive if a colored complex such as Arsenazo(III) is used. Analytically usehil absorption maxima and molar absorption coefficients ( s) are given in Table 10. Laser photoacoustic spectroscopy has been developed for both elemental analysis and speciation (oxidation state) at concentrations of lO " — 10 M (118). Chemical extraction can also be used to enhance this technique. [Pg.200]

Potassium is analyzed in chemicals that are used in the fertilizer industry and in finished fertilizers by flame photometric methods (44) or volumetric sodium tertraphenylboron methods (45) as approved by the AO AC. Gravimetric deterrnination of potassium as K2PtClg, known as the Lindo-Gladding method (46), and the wet-digestion deterrnination of potassium (47) have been declared surplus methods by the AO AC. Other methods used for control purposes and special analyses include atomic absorption spectrophotometry, inductively coupled plasma (icp) emission spectrophotometry, and a radiometric method based on measuring the radioactivity of the minute amount of the isotope present in all potassium compounds (48). [Pg.536]

Determination. Various classical techniques are used for the analysis of vanillin, including colorimetric, gravimetric, spectrophotometric, and chromatographic (tic, gc, and hplc) methods. The Food Chemical s Codex (FCC) prescribes infrared spectrophotometry for identifying and testing vanillin. However, more vanillin analyses are made by either gc or hplc. [Pg.401]

Spectrophotometric deterrnination at 550 nm is relatively insensitive and is useful for the deterrnination of vitamin B 2 in high potency products such as premixes. Thin-layer chromatography and open-column chromatography have been appHed to both the direct assay of cobalamins and to the fractionation and removal of interfering substances from sample extracts prior to microbiological or radioassay. Atomic absorption spectrophotometry of cobalt has been proposed for the deterrnination of vitamin B 2 in dry feeds. Chemical methods based on the estimation of cyanide or the presence of 5,6-dimethylben2irnida2ole in the vitamin B 2 molecule have not been widely used. [Pg.115]

Testing and Control. Analysis and testing are required whenever a new plating solution is made up, and thereafter at periodic intervals. The analyses are relatively simple and require Httie equipment (78—80). Trace metal contaminants can be analy2ed using spot tests, colorimetricaHy, and with atomic absorption spectrophotometry (see Trace and residue analysis). Additives, chemical balance, impurity effects, and many other variables are tested with small plating cells, such as the Hull cell developed in 1937 (81,82). [Pg.155]

Standard addition. A known amount of the constituent being determined is added to the sample, which is then analysed for the total amount of constituent present. The difference between the analytical results for samples with and without the added constituent gives the recovery of the amount of added constituent. If the recovery is satisfactory our confidence in the accuracy of the procedure is enhanced. The method is usually applied to physico-chemical procedures such as polarography and spectrophotometry. [Pg.132]

Further techniques which may be applied directly to the solvent extract are flame spectrophotometry and atomic absorption spectrophotometry (AAS).13 The direct use of the solvent extract in AAS may be advantageous since the presence of the organic solvent generally enhances the sensitivity of the method. However, the two main reasons for including a chemical separation in the preparation of a sample for AAS are ... [Pg.174]

The sensitivity can, however, be improved if the technique of derivative spectrophotometry (Section 17.12) is employed. The development of inexpensive photoelectric colorimeters has placed this branch of instrumental chemical analysis within the means of even the smallest teaching institution. [Pg.646]

Solid phase spectrophotometry proved to be an appropriate technique for the determination of colorants in foods dne to its simplicity, selectivity, reasonable cost, low detection limits, and use of conventional instrnmentation. This simple, sensitive, and inexpensive method allowed simnltaneons determinations of Snnset Yellow FCF (SY), Quinoline Yellow, and their nnsnlfonated derivatives [Sndan I (SUD) and Quinoline Yellow Spirit Soluble (QYSS)] in mixtnres. Mixtnres of food colorants containing Tartrazine, Sunset Yellow, Ponceau 4R, Amaranth, and Brilliant Blue were simultaneously analyzed with Vis spectrophotometry without previous chemical separation. ... [Pg.541]

Second-derivative spectrophotometry has been used to monitor the time-dependent production of cis,tmns-(Xmax 242 nm) and trans, tram- (Xmax 232 nm) diene conjugates of microsomal PUFAs following the exposure of rats to carbon tetrachloride (CCU) (Corongui et al., 1986). These signals have been postulated to be derived from mixtures of peroxidized substrates. Previous studies using chemical model systems have established that autoxidation of linolenic or arachidonic acid results in the production of cis, trans- and tmns, trawr-conjugated diene... [Pg.14]

As active substances are separated and purified they are characterized by a combination of spectroscopic analyses and chemical correlations. Particularly useful spectroscopic analysis techniques are nuclear magnetic resonance (proton and carbon), mass spectrometry and Infra-red and ultraviolet spectrophotometry. [Pg.330]

Analysis of natural rubber Analysis of synthetic mbber Oils-characterisation-CC Rubber chemicals-Infrared Rubber chemicals-Ultraviolet Antidegradant-TLC Rubber-Pyrolysis GC Rubber identification by IR spectrophotometry Ct2, Br2, I2 by oxygen flask... [Pg.33]

UV/VIS spectrophotometry can be used to determine many physico-chemical characteristics of compounds and thus can provide information as to the identity of a particular compound. Although UV/VIS spectra do not enable absolute identification of an unknown, they are frequently used to confirm the identity of a substance through comparison of the measured spectrum with a reference spectrum. However, UV spectrophotometry is not highly specific, and can obviously only be applied to polymer additives which are absorbers of UV radiation, i.e. contain chromophoric groups. Both UV and IR monitor functional entities rather than the entire molecular structure. A functional group s proximity to other electropositive or electronegative structures in a molecule affects the absorbance spectrum, allowing one to infer some details of molecular structure. [Pg.304]

A multiwavelength approach might have been considered as an alternative to chemical derivatisation. Ruddle and Wilson [62] reported UV characterisation of PE extracts of three antioxidants (Topanol OC, Ionox 330 and Binox M), all with identical UV spectra and 7max = 277 nm, after reaction with nickel peroxide in alkaline ethanolic solutions, to induce marked differentiation in different solvents and allow positive identification. Nonionic surfactants of the type R0(CH2CH20) H were determined by UV spectrophotometry after derivatisation with tetrabromophenolphthalein ethyl ester potassium salt [34]. Magill and Becker [63] have described a rapid and sensitive spectrophotometric method to quantitate the peroxides present in the surfactants sorbitan monooleate and monostearate. The method, which relies on the peroxide conversion of iodide to iodine, works also for Polysorbate 60 and other surfactants and is more accurate than a titrimetric assay. [Pg.310]

Chemical Testing. Adequate instrumentation for a variety of different test methods should be available. Most stability-indicating chemical assays are performed by high-performance liquid chromatography. Occasionally, gas chromatography, infrared spectrophotometry, or spectrofluorimetry are used. Test... [Pg.168]

Test 2 Examine by infrared absorption spectrophotometry, according to the general procedure (2.2.24), comparing with spectrum obtained with primaquine diphosphate Chemical Reference Substance (CRS). Examine the substance as discs prepared as follows dissolve separately 0.1 g of primaquine diphosphate and the reference substance in 5 mL of water R, add 2 mL of dilute ammonia R and 5 mL of chloroform R and shake dry the chloroform layer over 0.5 g of anhydrous sodium sulfate R prepare a blank disc using about 0.3 g of potassium bromide R, apply dropwise to the disc 0.1 mL of the chloroform layer, allowing the chloroform to evaporate between applications dry the disc at 50 °C for 2 min. [Pg.163]

A large variety of aqueous and a few nonaqueous solutions have been used or proposed as chemical dosimeters with respective dose ranges for use (Spinks and Woods, 1990 Draganic and Draganic, 1971). Of these, a special mention may be made of the hydrated electron dosimeter for pulse radiolytic use (l(h2 to 10+2 Gy per pulse). It is composed of an aqueous solution of 10 mM ethanol (or 0.7 mM H2) with 0.1 to 10 mM NaOH. Concentration of hydrated electrons formed in the solution by the absorption of radiation is monitored by fast spectrophotometry, which is then used for dosimetry with the known G value of the hydrated electron. [Pg.364]

The uses of micelles in chemical analysis are rapidly increasing (Hinze, 1979). Analytical reactions are carried out typically on a small scale and are based on spectrophotometry. At the same time, undesired side reactions can cause major problems, especially when the analytical procedure depends on reactions which are relatively slow and require high temperatures, exotic solvents or high reagent concentrations for completion. Micelles can suppress undesired reactions as well as speed desired ones and they also solubilize reagents which are sparingly soluble in water. In addition it is often possible to make phosphorescence measurements at room temperature in the presence of surfactants which enormously increases the utility of this very sensitive method of detection. [Pg.281]

For example, X-ray fluorescence spectrometry may provide rapid but rather imprecise quantitative results in a trace element problem. Atomic absorption spectrophotometry, on the other hand, will supply more precise data, but at the expense of more time-consuming chemical manipulations. [Pg.614]


See other pages where Chemical spectrophotometry is mentioned: [Pg.429]    [Pg.429]    [Pg.373]    [Pg.2949]    [Pg.397]    [Pg.142]    [Pg.58]    [Pg.297]    [Pg.416]    [Pg.418]    [Pg.265]    [Pg.267]    [Pg.255]    [Pg.395]    [Pg.121]    [Pg.228]    [Pg.181]    [Pg.464]    [Pg.303]    [Pg.309]    [Pg.701]    [Pg.47]    [Pg.151]    [Pg.240]    [Pg.43]    [Pg.287]   
See also in sourсe #XX -- [ Pg.4 , Pg.37 , Pg.341 ]

See also in sourсe #XX -- [ Pg.4 , Pg.37 , Pg.341 ]

See also in sourсe #XX -- [ Pg.4 , Pg.37 , Pg.341 ]




SEARCH



Chemical analysis spectrophotometry

© 2024 chempedia.info