Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactors Mass transfer

Bubbles play an important role in many industrial and natural systems. A few examples include chemical reactors, mass transfer operations, froth flotation, and aeration systems. In some situations, buoyancy is the main cause of bubble motion. However, in low-gravity environments, more subtle effects such as surface tension gradients may be the primary mechanism for bubble motion. In turbulent flows, bubbles tend to follow the motion of the surrounding liquid. These examples may give some impression of the scope of the subject that we will attempt to address in this chapter. [Pg.206]

Flow Reactors Fast reactions and those in the gas phase are generally done in tubular flow reaclors, just as they are often done on the commercial scale. Some heterogeneous reactors are shown in Fig. 23-29 the item in Fig. 23-29g is suited to liquid/liquid as well as gas/liquid. Stirred tanks, bubble and packed towers, and other commercial types are also used. The operadon of such units can sometimes be predicted from independent data of chemical and mass transfer rates, correlations of interfacial areas, droplet sizes, and other data. [Pg.708]

These components of scale-up manifest themselves through the effects of chemical kinetics, mass transfer, and heat transfer. As an example of the way these factors interrelate to scale-up, the general process of commercial scale reactor design is shown inFigure 3.19, which is similar to presentations in [204, 205]. [Pg.139]

In the following pages we shall see that reactor design involves all the basic principles of chemical engineering with the addition of chemical kinetics. Mass transfer, heat transfer and fluid flow are all concerned and complications arise when, as so often is the case, interaction occurs between these transfer processes and the reaction itself. In designing a reactor it is essential to weigh up all the... [Pg.2]

Simultaneous measurements of the rate of change, temperature and composition of the reacting fluid can be reliably carried out only in a reactor where gradients of temperature and/or composition of the fluid phase are absent or vanish in the limit of suitable operating conditions. The determination of specific quantities such as catalytic activity from observations on a reactor system where composition and temperature depend on position in the reactor requires that the distribution of reaction rate, temperature and compositions in the reactor are measured or obtained from a mathematical model, representing the interaction of chemical reaction, mass-transfer and heat-transfer in the reactor. The model and its underlying assumptions should be specified when specific rate parameters are obtained in this way. [Pg.542]

The describing equation for chemical reaction mass transfer is obtained by applying the conservation law for either mass or moles on a time rate basis to the contents of a batch reactor. It is best to work with moles rather than mass since the rate of reaction is most conveniently described in terms of molar concentrations. The describing equation for species A in a batch reactor takes the form... [Pg.185]

The global transformation rate of a gas-liquid reaction catalyzed by a solid material is influenced by the mass transfer at the gas-liquid boundary and the liquid-solid boundary. Mass transfer and surface reaction occur in sequence, and for fast chemical reactions, mass transfer may affect the reactant concentration on the catalyst surface and, as a result, the reactor performance and the product selectivity. For a gaseous reactant, three mass transfer steps can be identified [113] (1) the direct transfer from the bubble through the thin liquid film near the wall to the catalyst surface (characterized by k aQg), (2) the transfer from the caps (i.e., front and back end) of the gas bubbles to a dissolved state in the liquid slug (characterized by and (3) the transfer of dissolved gas... [Pg.77]

Ullah U, Waldram SP, Bennett CJ, Truex T. Monolithic reactors Mass transfer measurements under reacting conditions. Chemical Engineering Science 1992 47 2413-2418. [Pg.212]

Additional functions can be included in the exchanger design, such as chemical reaction, mass transfer, and mixing, optimising the process considerably. In fact, the Heatric PCHF is also marketed as a reactor - the printed circuit reactor (PCR) (see Chapter 5). [Pg.84]

CFD has become a standard tool for analyzing flow patterns in various situations related to chemical engineering. In many cases related to multiphase reactors, mass transfer limits overall chemical reaction. In these cases the accurate calculation of local mass transfer rates is of utmost importance. This is best done with the population balance approach, where local properties are used to model bubble or droplet breakage and coalescence phenomena. It has been proven that these rigorous models along with other multiphase and chemistry related models can be implemented in the CFD code, and solved simultaneously with the fluid flows. [Pg.548]

In common multiphase reactors mass transfer resistances frequently lead to a decrease of the effective reaction rate compared to the chemical (intrinsic) rate. In addition, many multiphase reactions like oxidations or hydrogenations are highly exothermic. Consequently, heat removal may also be important. [Pg.292]

Work in the area of simultaneous heat and mass transfer has centered on the solution of equations such as 1—18 for cases where the stmcture and properties of a soHd phase must also be considered, as in drying (qv) or adsorption (qv), or where a chemical reaction takes place. Drying simulation (45—47) and drying of foods (48,49) have been particularly active subjects. In the adsorption area the separation of multicomponent fluid mixtures is influenced by comparative rates of diffusion and by interface temperatures (50,51). In the area of reactor studies there has been much interest in monolithic and honeycomb catalytic reactions (52,53) (see Exhaust control, industrial). Eor these kinds of appHcations psychrometric charts for systems other than air—water would be useful. The constmction of such has been considered (54). [Pg.106]

Over 25 years ago the coking factor of the radiant coil was empirically correlated to operating conditions (48). It has been assumed that the mass transfer of coke precursors from the bulk of the gas to the walls was controlling the rate of deposition (39). Kinetic models (24,49,50) were developed based on the chemical reaction at the wall as a controlling step. Bench-scale data (51—53) appear to indicate that a chemical reaction controls. However, flow regimes of bench-scale reactors are so different from the commercial furnaces that scale-up of bench-scale results caimot be confidently appHed to commercial furnaces. For example. Figure 3 shows the coke deposited on a controlled cylindrical specimen in a continuous stirred tank reactor (CSTR) and the rate of coke deposition. The deposition rate decreases with time and attains a pseudo steady value. Though this is achieved in a matter of rninutes in bench-scale reactors, it takes a few days in a commercial furnace. [Pg.438]

A number of factors limit the accuracy with which parameters for the design of commercial equipment can be determined. The parameters may depend on transport properties for heat and mass transfer that have been determined under nonreacting conditions. Inevitably, subtle differences exist between large and small scale. Experimental uncertainty is also a factor, so that under good conditions with modern equipment kinetic parameters can never be determined more precisely than 5 to 10 percent (Hofmann, in de Lasa, Chemical Reactor Design and Technology, Martinus Nijhoff, 1986, p. 72). [Pg.707]

Designed to obtain such fundamental data as chemical rates free of mass transfer resistances or other complications. Some of the heterogeneous reactors of Fig. 23-29, for instance, employ known interfacial areas, thus avoiding one uncertainty. [Pg.707]

An industrial chemical reacdor is a complex device in which heat transfer, mass transfer, diffusion, and friction may occur along with chemical reaction, and it must be safe and controllable. In large vessels, questions of mixing of reactants, flow distribution, residence time distribution, and efficient utilization of the surface of porous catalysts also arise. A particular process can be dominated by one of these factors or by several of them for example, a reactor may on occasion be predominantly a heat exchanger or a mass-transfer device. A successful commercial unit is an economic balance of all these factors. [Pg.2070]

A number of successful devices have been in use for finding mass-transfer coefficients, some of which are sketched in Fig. 23-29, and all of which have known or adjustable interfacial areas. Such laboratoiy testing is reviewed, for example, by Danckwerts (Ga.s-Liquid Reac-tion.s, McGraw-Hih, 1970) and Charpentier (in Ginetto and Silveston, eds., Multiphase Chemical Reactor Theory, De.sign, Scaleup, Hemisphere, 1986). [Pg.2109]

Two complementai y reviews of this subject are by Shah et al. AIChE Journal, 28, 353-379 [1982]) and Deckwer (in de Lasa, ed.. Chemical Reactor Design andTechnology, Martinus Nijhoff, 1985, pp. 411-461). Useful comments are made by Doraiswamy and Sharma (Heterogeneous Reactions, Wiley, 1984). Charpentier (in Gianetto and Silveston, eds.. Multiphase Chemical Reactors, Hemisphere, 1986, pp. 104—151) emphasizes parameters of trickle bed and stirred tank reactors. Recommendations based on the literature are made for several design parameters namely, bubble diameter and velocity of rise, gas holdup, interfacial area, mass-transfer coefficients k a and /cl but not /cg, axial liquid-phase dispersion coefficient, and heat-transfer coefficient to the wall. The effect of vessel diameter on these parameters is insignificant when D > 0.15 m (0.49 ft), except for the dispersion coefficient. Application of these correlations is to (1) chlorination of toluene in the presence of FeCl,3 catalyst, (2) absorption of SO9 in aqueous potassium carbonate with arsenite catalyst, and (3) reaction of butene with sulfuric acid to butanol. [Pg.2115]

For many laboratoiy studies, a suitable reactor is a cell with independent agitation of each phase and an undisturbed interface of known area, like the item shown in Fig. 23-29d, Whether a rate process is controlled by a mass-transfer rate or a chemical reaction rate sometimes can be identified by simple parameters. When agitation is sufficient to produce a homogeneous dispersion and the rate varies with further increases of agitation, mass-transfer rates are likely to be significant. The effect of change in temperature is a major criterion-, a rise of 10°C (18°F) normally raises the rate of a chemical reaction by a factor of 2 to 3, but the mass-transfer rate by much less. There may be instances, however, where the combined effect on chemical equilibrium, diffusivity, viscosity, and surface tension also may give a comparable enhancement. [Pg.2116]

This involves knowledge of chemistry, by the factors distinguishing the micro-kinetics of chemical reactions and macro-kinetics used to describe the physical transport phenomena. The complexity of the chemical system and insufficient knowledge of the details requires that reactions are lumped, and kinetics expressed with the aid of empirical rate constants. Physical effects in chemical reactors are difficult to eliminate from the chemical rate processes. Non-uniformities in the velocity, and temperature profiles, with interphase, intraparticle heat, and mass transfer tend to distort the kinetic data. These make the analyses and scale-up of a reactor more difficult. Reaction rate data obtained from laboratory studies without a proper account of the physical effects can produce erroneous rate expressions. Here, chemical reactor flow models using matliematical expressions show how physical... [Pg.1116]


See other pages where Chemical reactors Mass transfer is mentioned: [Pg.401]    [Pg.272]    [Pg.272]    [Pg.122]    [Pg.5]    [Pg.16]    [Pg.79]    [Pg.124]    [Pg.474]    [Pg.177]    [Pg.56]    [Pg.9]    [Pg.232]    [Pg.342]    [Pg.64]    [Pg.480]    [Pg.90]    [Pg.92]    [Pg.7]    [Pg.476]    [Pg.37]    [Pg.219]    [Pg.29]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Chemical mass transfer

Chemical reactors

Reactor mass transfer

Reactors chemical reactor

© 2024 chempedia.info