Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steady pseudo

The reservoir medium volume (111) is changed when the glucose concentration in the medium falls below 2 mg mH, i.e. daily in steady/pseudo-steady-state culture. [Pg.275]

Bromide ion acts as an inliibitor through step (9) which competes for HBr02 with the rate detennining step for the autocatalytic process described previously, step (4) and step (5). Step (8) and Step (9) constitute a pseudo-first-order removal of Br with HBr02 maintained in a low steady-state concentration. Only once [Br ] < [Br ] = /fo[Br07]//r2 does step (3) become effective, initiating the autocatalytic growth and oxidation. [Pg.1097]

Figure B 1.16.9 shows background-free, pseudo-steady-state CIDNP spectra of the photoreaction of triethylamine with (a) anthroquinone as sensitizer and (b) and (c) xanthone as sensitizer. Details of the pseudo-steady-state CIDNP method are given elsewhere [22]. In trace (a), no signals from the p protons of products 1 (recombination) or 2 (escape) are observed, indicating that the products observed result from the radical ion pair. Traces (b) and (c) illustrate a usefiil feature of pulsed CIDNP net and multiplet effects may be separated on the basis of their radiofrequency (RF) pulse tip angle dependence [21]. Net effects are shown in trace (b) while multiplet effects can... Figure B 1.16.9 shows background-free, pseudo-steady-state CIDNP spectra of the photoreaction of triethylamine with (a) anthroquinone as sensitizer and (b) and (c) xanthone as sensitizer. Details of the pseudo-steady-state CIDNP method are given elsewhere [22]. In trace (a), no signals from the p protons of products 1 (recombination) or 2 (escape) are observed, indicating that the products observed result from the radical ion pair. Traces (b) and (c) illustrate a usefiil feature of pulsed CIDNP net and multiplet effects may be separated on the basis of their radiofrequency (RF) pulse tip angle dependence [21]. Net effects are shown in trace (b) while multiplet effects can...
Figure Bl.16.9. Background-free, pseudo-steady-state CIDNP spectra observed in the photoreaction of triethylamine with different sensitizers ((a), antliraquinone (b), xanthone, CIDNP net effect (c), xanthone, CIDNP multiplet effect, amplitudes multiplied by 1.75 relative to the centre trace) in acetonitrile-d3. The stmctiiral formulae of the most important products bearing polarizations (1, regenerated starting material 2, N,N-diethylvinylamine 3, combination product of amine and sensitizer) are given at the top R denotes the sensitizer moiety. The polarized resonances of these products are assigned in the spectra. Reprinted from [21]. Figure Bl.16.9. Background-free, pseudo-steady-state CIDNP spectra observed in the photoreaction of triethylamine with different sensitizers ((a), antliraquinone (b), xanthone, CIDNP net effect (c), xanthone, CIDNP multiplet effect, amplitudes multiplied by 1.75 relative to the centre trace) in acetonitrile-d3. The stmctiiral formulae of the most important products bearing polarizations (1, regenerated starting material 2, N,N-diethylvinylamine 3, combination product of amine and sensitizer) are given at the top R denotes the sensitizer moiety. The polarized resonances of these products are assigned in the spectra. Reprinted from [21].
Mechanism. The thermal cracking of hydrocarbons proceeds via a free-radical mechanism (20). Siace that discovery, many reaction schemes have been proposed for various hydrocarbon feeds (21—24). Siace radicals are neutral species with a short life, their concentrations under reaction conditions are extremely small. Therefore, the iategration of continuity equations involving radical and molecular species requires special iategration algorithms (25). An approximate method known as pseudo steady-state approximation has been used ia chemical kinetics for many years (26,27). The errors associated with various approximations ia predicting the product distribution have been given (28). [Pg.434]

Over 25 years ago the coking factor of the radiant coil was empirically correlated to operating conditions (48). It has been assumed that the mass transfer of coke precursors from the bulk of the gas to the walls was controlling the rate of deposition (39). Kinetic models (24,49,50) were developed based on the chemical reaction at the wall as a controlling step. Bench-scale data (51—53) appear to indicate that a chemical reaction controls. However, flow regimes of bench-scale reactors are so different from the commercial furnaces that scale-up of bench-scale results caimot be confidently appHed to commercial furnaces. For example. Figure 3 shows the coke deposited on a controlled cylindrical specimen in a continuous stirred tank reactor (CSTR) and the rate of coke deposition. The deposition rate decreases with time and attains a pseudo steady value. Though this is achieved in a matter of rninutes in bench-scale reactors, it takes a few days in a commercial furnace. [Pg.438]

The equations that have been developed for design using these pseudo constants are based on steady-state mass balances of the biomass and the waste components around both the reactor of the system and the device used to separate and recycle microorganisms. Thus, the equations that can be derived will be dependent upon the characteristics of the reactor and the separator. It is impossible here to... [Pg.2216]

The laboratory studies utilized small-scale (1-5-L) reactors. These are satisfactoiy because the reaction rates observed are independent of reac tor size. Several reac tors are operated in parallel on the waste, each at a different BSRT When steady state is reached after several weeks, data on the biomass level (X) in the system and the untreated waste level in the effluent (usually in terms of BOD or COD) are collected. These data can be plotted for equation forms that will yield linear plots on rec tangular coordinates. From the intercepts and the slope or the hnes, it is possible to determine values of the four pseudo constants. Table 25-42 presents some available data from the literature on these pseudo constants. Figure 25-53 illustrates the procedure for their determination from the laboratory studies discussed previously. [Pg.2219]

On the basis of the pseudo-steady state assumption, the net rate of disappearanee is zero, therefore... [Pg.214]

Briggs and Haldane [8] proposed a general mathematieal deseription of enzymatie kinetie reaetion. Their model is based on the assumption that after a short initial startup period, the eoneentration of the enzyme-substrate eomplex is in a pseudo-steady state (PSS). Eor a eonstant volume bateh reaetor operated at eonstant temperature T, and pH, the rate expressions and material balanees on S, E, ES, and P are... [Pg.840]

Thischapterhasbeendevotedtocontinuousreactorsandtheiranalyses.Wehaveexamined the powerful idealizations of the CSTR and PER. Pseudo-steady states and steady states... [Pg.457]

With the concentration of I from the steady-state approximation, the pseudo-first-order rate constant is... [Pg.141]

The inlet monomer concentration was varied sinusoidally to determine the effect of these changes on Dp, the time-averaged polydispersity, when compared with the steady-state case. For the unsteady state CSTR, the pseudo steady-state assumption for active centres was used to simplify computations. In both of the mechanisms considered, D increases with respect to the steady-state value (for constant conversion and number average chain length y ) as the frequency of the oscillation in the monomer feed concentration is decreased. The maximum deviation in D thus occurs as lo 0. However, it was predicted that the value of D could only be increased by 10-325S with respect to the steady state depending on reaction mechanism and the amplitude of the oscillating feed. Laurence and Vasudevan (12) considered a reaction with combination termination and no chain transfer. [Pg.254]

Apply the pseudo-steady hypothesis to the free-radical concentrations to determine a functional form for the reaction rate. Note that M represents any molecule. Use the combined data in Problem 7.6 to fit this mechanism. [Pg.252]

The reactor is operated in the semibatch mode with component A being sparged into the stirred tank. Unreacted A and the reaction products leave through the gas phase so that the mass of liquid remains constant. To the extent that these assumptions are true and the catalyst does not deactivate, a pseudo-steady-state can be achieved. Find (flg)o j. Assume that Henry s law is valid throughout the composition range and ignore any changes in the gas density. [Pg.391]

Note that ai will gradually increase during the course of the reaction and will reach its saturation value, agjKu, when B is depleted. Dropping the accumulation term for ai i) represents a form of the pseudo-steady hypothesis. Since component B is not transferred between phases, its material balance has the usual form for a batch reactor ... [Pg.392]

Measurements Using Liquid-Phase Reactions. Liquid-phase reactions, and the oxidation of sodium sulfite to sodium sulfate in particular, are sometimes used to determine kiAi. As for the transient method, the system is batch with respect to the liquid phase. Pure oxygen is sparged into the vessel. A pseudo-steady-state results. There is no gas outlet, and the inlet flow rate is adjusted so that the vessel pressure remains constant. Under these circumstances, the inlet flow rate equals the mass transfer rate. Equations (11.5) and (11.12) are combined to give a particularly simple result ... [Pg.399]

Manufacturing economics require that many devices be fabricated simultaneously in large reactors. Uniformity of treatment from point to point is extremely important, and the possibility of concentration gradients in the gas phase must be considered. For some reactor designs, standard models such as axial dispersion may be suitable for describing mixing in the gas phase. More typically, many vapor deposition reactors have such low L/R ratios that two-dimensional dispersion must be considered. A pseudo-steady model is... [Pg.426]

A full development of the rate law for the bimolecular reaction of MDI to yield carbodiimide and CO indicates that the reaction should truly be 2nd-order in MDI. This would be observed experimentally under conditions in which MDI is at limiting concentrations. This is not the case for these experimements MDI is present in considerable excess (usually 5.5-6 g of MDI (4.7-5.1 ml) are used in an 8.8 ml vessel). So at least at the early stages of reaction, the carbon dioxide evolution would be expected to display pseudo-zero order kinetics. As the amount of MDI is depleted, then 2nd-order kinetics should be observed. In fact, the asymptotic portion of the 225 C Isotherm can be fitted to a 2nd-order rate law. This kinetic analysis is consistent with a more detailed mechanism for the decomposition, in which 2 molecules of MDI form a cyclic intermediate through a thermally allowed [2+2] cycloaddition, which is formed at steady state concentrations and may then decompose to carbodiimide and carbon dioxide. Isocyanates and other related compounds have been reported to participate in [2 + 2] and [4 + 2] cycloaddition reactions (8.91. [Pg.435]

Procedures enabling the calculation of bifurcation and limit points for systems of nonlinear equations have been discussed, for example, by Keller (13) Heinemann et al. (14-15) and Chan (16). In particular, in the work of Heineman et al., a version of Keller s pseudo-arclength continuation method was used to calculate the multiple steady-states of a model one-step, nonadiabatic, premixed laminar flame (Heinemann et al., (14)) a premixed, nonadiabatic, hydrogen-air system (Heinemann et al., (15)). [Pg.410]

As illustrated in Fig. 1, the activated carbon displays the highest conversion and selectivity among all the catalysts during the initial reaction period, however, its catalytic activity continues to decrease during the reaction, which is probably caused by coke deposition in the micropores. By contrast, the reaction over the CNF composites treated in air and HN03 can reach a pseudo-steady state after about 200 min. Similiar transient state is also observed on the CNFs and the untreated composite. Table 3 collects the kinetic results after 300 min on stream over catalysts tested for the ODE, in which the activity is referred to the BET surface area. The air-treated composite gives the highest conversion and styrene selectivity at steady state. [Pg.723]

In PAMPA measurements each well is usually a one-point-in-time (single-timepoint) sample. By contrast, in the conventional multitimepoint Caco-2 assay, the acceptor solution is frequently replaced with fresh buffer solution so that the solution in contact with the membrane contains no more than a few percent of the total sample concentration at any time. This condition can be called a physically maintained sink. Under pseudo-steady state (when a practically linear solute concentration gradient is established in the membrane phase see Chapter 2), lipophilic molecules will distribute into the cell monolayer in accordance with the effective membrane-buffer partition coefficient, even when the acceptor solution contains nearly zero sample concentration (due to the physical sink). If the physical sink is maintained indefinitely, then eventually, all of the sample will be depleted from both the donor and membrane compartments, as the flux approaches zero (Chapter 2). In conventional Caco-2 data analysis, a very simple equation [Eq. (7.10) or (7.11)] is used to calculate the permeability coefficient. But when combinatorial (i.e., lipophilic) compounds are screened, this equation is often invalid, since a considerable portion of the molecules partitions into the membrane phase during the multitimepoint measurements. [Pg.138]

We attribute the form of this rate law to be due to the pseudoequilibrium 6. We refer to 6 as a pseudo-equilibrium, because it is in fact a steady state rather than a true equilibrium. If... [Pg.95]

The mathematical solution to moving boundary problem involves setting up a pseudo-steady-state model. The pseudo-steady-state assumption is valid as long as the boundary moves ponderously slowly compared with the time required to reach steady state. Thus, we are assuming that the boundary between the salt solution and the solid salt moves slowly in the tablet compared to the diffusion... [Pg.721]

Other established attempts on heat integration of batch plants are based on the concept of pinch analysis (Linnhoff et al., 1979 Umeda et al., 1979), which was initially developed for continuous processes at steady-state. As such, these methods assume a pseudo-continuous behaviour in batch operations either by averaging time over a fixed time horizon of interest (Linnhoff et al., 1988) or assuming fixed production schedule within which opportunities for heat integration are explored (Kemp and MacDonald, 1987, 1988 Obeng and Ashton, 1988 Kemp and Deakin, 1989). These methods cannot be applied in situations where the optimum schedule has to be determined simultaneously with the heat exchanger network that minimises external energy use. [Pg.220]

ILLUSTRATION 4.2 USE OF STEADY-STATE AND PSEUDO EQUILIBRIUM APPROXIMATIONS FOR INTERMEDIATE CONCENTRATIONS... [Pg.82]


See other pages where Steady pseudo is mentioned: [Pg.1099]    [Pg.512]    [Pg.438]    [Pg.724]    [Pg.2217]    [Pg.2217]    [Pg.173]    [Pg.356]    [Pg.291]    [Pg.390]    [Pg.394]    [Pg.683]    [Pg.575]    [Pg.49]    [Pg.511]    [Pg.215]    [Pg.492]    [Pg.631]    [Pg.15]    [Pg.18]   
See also in sourсe #XX -- [ Pg.20 , Pg.61 ]




SEARCH



Adsorption pseudo-steady state)

Bodenstein pseudo steady state

Bodenstein pseudo steady state approximation

Coking pseudo-steady-state

Diffusion pseudo-steady state approximation

Equivalent reaction of a linear subset in local pseudo-steady state mode

Kinetics of Non-pseudo-steady State Modes

Mass transfer pseudo steady state

Membrane pseudo steady-state

Partial pseudo-steady state modes

Pseudo- and Quasi-steady State Modes

Pseudo- and quasi-steady state of diffusion

Pseudo-Steady-State Approximation

Pseudo-Steady-State Polymerization Behavior

Pseudo-steady state

Pseudo-steady state and open or closed systems

Pseudo-steady state assumption

Pseudo-steady state mode

Pseudo-steady state mode with a rate-determining step

Pseudo-steady state transfer

Pseudo-steady-state example

Pseudo-steady-state hypothesis

Pseudo-steady-state hypothesis PSSH)

Pseudo-steady-state methods

Pseudo-steady-state model

Pseudo-steady-state, reaction kinetics

Semicontinuous Pseudo Steady State

Solving a pseudo-steady state mixed mode

Steady-state conditions, pseudo

The Pseudo-Steady-State Approximation

The pseudo-steady state mode test

Time dependence of pseudo-steady states

Wagner pseudo-steady state approximation

© 2024 chempedia.info