Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical reactions direction factor

The nature of intermolecular force is essentially no different from that which participates in the chemical bond or chemical reaction. The factor which determines the stable shape of a molecule, the influence on the reaction of an atom or group which does not take any direct part in the reaction, and various other sterically controlling factors might also be comprehended by a consideration based on the same theoretical foundation. [Pg.82]

Design a two-phase gas-liquid CSTR that operates at 55°C to accomplish the liquid-phase chlorination of benzene. Benzene enters as a liquid, possibly diluted by an inert solvent, and chlorine gas is bubbled through the liquid mixture. It is only necessary to consider the first chlorination reaction because the kinetic rate constant for the second reaction is a factor of 8 smaller than the kinetic rate constant for the first reaction at 55°C. Furthermore, the kinetic rate constant for the third reaction is a factor of 243 smaller than the kinetic rate constant for the first reaction at 55°C. The extents of reaction for the second and third chlorination steps ( 2 and 3) are much smaller than the value of for any simulation (i.e., see Section 1-2.2). Chlorine gas must diffuse across the gas-liquid interface before the reaction can occur. The total gas-phase volume within the CSTR depends directly on the inlet flow rate ratio of gaseous chlorine to hquid benzene, and the impeller speed-gas sparger combination produces gas bubbles that are 2 mm in diameter. Hence, interphase mass transfer must be considered via mass transfer coefficients. The chemical reaction occurs predominantly in the liquid phase. In this respect, it is necessary to introduce a chemical reaction enhancement factor to correct liquid-phase mass transfer coefficients, as given by equation (13-18). This is accomplished via the dimensionless correlation for one-dimensional diffusion and pseudo-first-order irreversible chemical reaction ... [Pg.655]

Figure 8-8 shows the analogous situation for a chemical reaction. The solid curve shows the activation energy barrier which must be surmounted for reaction to take place. When a catalyst is added, a new reaction path is provided with a different activation energy barrier, as suggested by the dashed curve. This new reaction path corresponds to a new reaction mechanism that permits the reaction to occur via a different activated complex. Hence, more particles can get over the new, lower energy barrier and the rate of the reaction is increased. Note that the activation energy for the reverse reaction is lowered exactly the same amount as for the forward reaction. This accounts for the experimental fact that a catalyst for a reaction has an equal effect on the reverse reaction that is, both reactions are speeded up by the same factor. If a catalyst doubles the rate in one direction, it also doubles the rate in the reverse direction. [Pg.137]

Open-channel monoliths are better defined. The Sherwood (and Nusselt) number varies mainly in the axial direction due to the formation ofa hydrodynamic boundary layer and a concentration (temperature) boundary layer. Owing to the chemical reactions and heat formation on the surface, the local Sherwood (and Nusselt) numbers depend on the local reaction rate and the reaction rate upstream. A complicating factor is that the traditional Sherwood numbers are usually defined for constant concentration or constant flux on the surface, while, in reahty, the catalytic reaction on the surface exhibits different behavior. [Pg.353]

The double arrows indicate reversibifity, an intrinsic property of all chemical reactions. Thus, for reaction (1), if A and B can form P and Q, then P and Q can also form A and B. Designation of a particular reactant as a substrate or product is therefore somewhat arbitrary since the products for a reaction written in one direction are the substrates for the reverse reaction. The term products is, however, often used to designate the reactants whose formation is thermodynamically favored. Reactions for which thermodynamic factors strongly favor formation of the products to which the arrow points often are represented with a single arrow as if they were irreversible ... [Pg.60]

Notice that the word spontaneous has a different meaning in thermodynamics than it does in everyday speech. Ordinarily, spontaneous refers to an event that takes place without any effort or premeditation. For example, a crowd cheers spontaneously for an outstanding performance. In thermodynamics, spontaneous refers only to the natural direction of a process, without regard to whether it occurs rapidly and easily. Chemical kinetics, which we introduce in Chapter 15, describes the factors that determine the speeds of chemical reactions. Thermodynamic spontaneity refers to the direction that a process will take if left alone and given enough time. [Pg.973]

An enzyme, the most typical biocatalyst, is a protein (or peptide molecular chain), which can be made from living cells and promote, direct or facilitate the occurrence of a specific chemical reaction, without being consumed during the course of such reaction. The term enzyme is mostly used to describe proteinaeceous catalysts. However, in some instances it also includes co-enzymes or co-factors as they are supposed to be required to bring about the desired reaction. [Pg.5]

Now, most metal ion/organic molecule chemical reactions inside cells also come to equilibrium rapidly. The organic products, made irreversibly available by synthesis under feedback control, contain a broad set of possible binding sites for selected metal ions mainly in soluble proteins (enzymes) and in the pumps for uptake or rejection managed at the cell membrane, as well as in the factors, transcription factors, necessary for controlled production of those organic products under the direction of the coded system. These ion-selective binding sites are common to all cells so that while all cells are based on similar major organic reactions and similar but specific biopolymer products, they also have in common a set of... [Pg.418]

Changes in the distribution of organic compounds in a seawater sample can be due to physical, chemical, or biological factors. As a physical factor, we might consider the absorption of surface-active materials on the walls of the sample container. While this effect cannot be eliminated it can be minimised by the use of the largest convenient sample bottle, and the avoidance of plastic (especially Teflon) containers. Another possible method of eliminating this source of error would be to draw the sample directly into the container in which the analytical reaction is to be run. [Pg.37]

The feasibility (i.e. direction and extent of the chemical change) and mechanism (i.e. study of rate and factors effecting it) are two important aspects, which should be distinguished clearly while considering a chemical reaction. There is no simple connection between the two aspects. For a general reaction... [Pg.79]

At room temperature, entropy effects are so small that they have little effect on the direction of a chemical reaction unless the difference in AG or 2s.H between reactants and products is correspondingly small. But at the high temperature encountered in pyrotechnic reactions such as the combustion of gunpowder, the relative importance of the change in entropy increases until it becomes a dominant factor. Hence, the importance of the temperature term in the free energy equation. [Pg.24]

In the equation, the atoms that are actually needed to form the desired product are shown in boldface.) The atoms that are not directly involved in the formation of the product and are, therefore, "wasted atoms are shown in regular print. These atoms are regarded as "wasted because, once the desired product is formed, they must be disposed of in some way. In this particular example, the final by-products, sodium bisulfate and water, are relatively harmless and cause no threat to the environment. But many chemical reactions result in hazardous chemicals that do pose a threat to the health of plants and animals and that do, therefore, become factors in air and water pollution and waste management issues. [Pg.186]

The importance of single-bond conformation is nevermore apparent than for polypeptides. Here, distinct local domains involving a-helices and P-sheets (among other structures) occur commonly, and these in turn dictate overall (tertiary) stmcture of proteins and ultimately protein function. Interestingly, proteins appear to exhibit well-defined shapes, that is, exist as a single conformer or a very few closely-related conformers. This is the reason that they can be crystallized and their structures determined, and is certainly a major factor behind the ability of proteins to direct specific chemical reactions. [Pg.271]

Results of these investigations demonstrate that changes of the reactor surface can be an effective method for directing chemical reactions. Thus, developing a theory of how heterogeneous factors influence liquid-phase chain reactions is one of the important lines of advancement in this area. Only a few years ago it was thought, almost a priori, that there are practically no heterogeneous factors in liquid-phase oxidation and that liquid-phase processes differ from vapor-phase processes in this respect. [Pg.16]

An understanding of reaction rates can be explained by adopting a collision model for chemical reactions. The collision theory assumes chemical reactions are a result of molecules colliding, and the rate of the reaction is dictated by several characteristics of these collisions. An important factor that affects the reaction rate is the frequency of collisions. The reaction rate is directly dependent on the number of collisions that take place, but several other important factors also dictate the speed of a chemical reaction. [Pg.140]


See other pages where Chemical reactions direction factor is mentioned: [Pg.1905]    [Pg.164]    [Pg.2153]    [Pg.2311]    [Pg.16]    [Pg.934]    [Pg.1059]    [Pg.382]    [Pg.552]    [Pg.89]    [Pg.91]    [Pg.249]    [Pg.25]    [Pg.18]    [Pg.274]    [Pg.24]    [Pg.189]    [Pg.234]    [Pg.649]    [Pg.24]    [Pg.573]    [Pg.301]    [Pg.21]    [Pg.317]    [Pg.147]    [Pg.421]    [Pg.9]    [Pg.319]    [Pg.16]    [Pg.65]    [Pg.69]    [Pg.112]    [Pg.60]    [Pg.340]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Chemical reactions direction

Direct reactions

Directed reactions

Direction factor

Reaction direct reactions

Reaction direction

© 2024 chempedia.info