Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid-phase mass transfer coefficient

D( = diffusion coefficient of solute in liquid g = gravity-acceleration constant h = length of wetted wall kf = mass-transfer coefficient, liquid phase r = mass rate of flow of hqnid. f = viscosity of liquid = density of hqnid... [Pg.1403]

Interfacial Area This consideration in agitated vessels has been reviewed and summarized by Tatterson (op. cit.). Predictive methods for interfacial area are not presented here because correlations are given for the overall volumetric mass transfer coefficient liquid phase controlhng mass transfer. [Pg.1425]

Gravity spray towers superficial velocity about 5.5 L/s m mass transfer coefficients liquid phase ... [Pg.1416]

The hydrodynamic parameters that are required for stirred tank design and analysis include phase holdups (gas, liquid, and solid) volumetric gas-liquid mass-transfer coefficient liquid-solid mass-transfer coefficient liquid, gas, and solid mixing and heat-transfer coefficients. The hydrodynamics are driven primarily by the stirrer power input and the stirrer geometry/type, and not by the gas flow. Hence, additional parameters include the power input of the stirrer and the pumping flow rate of the stirrer. [Pg.53]

Overall volumetric mass-transfer coefficient for gas phase, based on partial-pressure driving force, kg mol/m -h-atm or lb mol/ft -h-atm Individual mass transfer for liquid phase, based on concentration difference, m/h or ft/h... [Pg.733]

Mass transfer involves establishing a transfer between the elementary regions of the reactor and between individual phases (interfacial mass transfer coefficients gas phase mass transfer, liquid phase mass transfer, mass transfer with reaction, liquid-solid mass transfer), as well as other elementary phenomena and processes connected with mass transfer gas phase phenomena and processes (gas hold-up, bubble size, interfacial area and bubble coalescence/redispersion), volumetric mass transfer and power consumption during mass transfer (2). [Pg.359]

The power n is an experimental variable with a value of about 2 for gas-liquid mass transfer. The liquid-phase mass transfer coefficient can therefore be related to diffusivity as (Azbel, 1981 Moo-Young and Blanch, 1981)... [Pg.13]

A spray cyclone is based on the same idea as tiie bubble cyclone. A gas is introduced with a high velocity (say, 40 m/s) tangentionally into the cyclone, and liquid is sprayed in the axis (see figure 4.14). The liquid drops travel with great speed towards the wall, and flow downward as a thin film. Because of the greatly enhanced gas phase mass transfer coefficients, gas phase components can be separated on the basis of their effective liquid phase mass transfer coefficients (Schrauwen, 1986). These effects are discussed further in section 5.42.2 see eq. (5.45). [Pg.112]

When the reaction in the porous catalyst is very rapid, the conversion rate will be determined by gas/liquid or liquid/solid mass transfer. Particularly volumetric gas/liquid mass transfer coefficients (liquid side) are not very much different in slurry-reactors and in three phase packed beds (aU under optimum conditions). [Pg.284]

Equation 28 and its liquid-phase equivalent are very general and valid in all situations. Similarly, the overall mass transfer coefficients may be made independent of the effect of bulk fiux through the films and thus nearly concentration independent for straight equilibrium lines ... [Pg.23]

Vl Liquid-phase mass-transfer coefficient for dilute systems kmoP[(s-m )(kmoPm )] or ni/s (lbmol)/[(h-tF)(lbmol/tt )J or tt/h... [Pg.589]

For the liquid-phase mass-transfer coefficient /cl, the effects of total system pressure can be ignored for all practical purposes. Thus, when using Kq and /cl for the design of gas absorbers or strippers, the primary pressure effects to consider will be those which affect the equilibrium curves and the values of m. If the pressure changes affect the hydrodynamics, then Icq, and a can all change significantly. [Pg.610]

With regard to the liqiiid-phase mass-transfer coefficient, Whitney and Vivian found that the effect of temperature upon coiild be explained entirely by variations in the liquid-phase viscosity and diffusion coefficient with temperature. Similarly, the oxygen-desorption data of Sherwood and Holloway [Trans. Am. Jnst. Chem. Eng., 36, 39 (1940)] show that the influence of temperature upon Hl can be explained by the effects of temperature upon the liquid-phase viscosity and diffusion coefficients. [Pg.610]

It is important to recognize that the effects of temperature on the liquid-phase diffusion coefficients and viscosities can be veiy large and therefore must be carefully accounted for when using /cl or data. For liquids the mass-transfer coefficient /cl is correlated in terms of design variables by relations of the form... [Pg.610]

Extrapolation of KgO data for absorption and stripping to conditions other than those for which the origin measurements were made can be extremely risky, especially in systems involving chemical reactions in the liquid phase. One therefore would be wise to restrict the use of overall volumetric mass-transfer-coefficient data to conditions not too far removed from those employed in the actual tests. The most reh-able data for this purpose would be those obtained from an operating commercial unit of similar design. [Pg.625]

Example 8 Calculation of Rate-Based Distillation The separation of 655 lb mol/h of a bubble-point mixture of 16 mol % toluene, 9.5 mol % methanol, 53.3 mol % styrene, and 21.2 mol % ethylbenzene is to be earned out in a 9.84-ft diameter sieve-tray column having 40 sieve trays with 2-inch high weirs and on 24-inch tray spacing. The column is equipped with a total condenser and a partial reboiler. The feed wiU enter the column on the 21st tray from the top, where the column pressure will be 93 kPa, The bottom-tray pressure is 101 kPa and the top-tray pressure is 86 kPa. The distillate rate wiU be set at 167 lb mol/h in an attempt to obtain a sharp separation between toluene-methanol, which will tend to accumulate in the distillate, and styrene and ethylbenzene. A reflux ratio of 4.8 wiU be used. Plug flow of vapor and complete mixing of liquid wiU be assumed on each tray. K values will be computed from the UNIFAC activity-coefficient method and the Chan-Fair correlation will be used to estimate mass-transfer coefficients. Predict, with a rate-based model, the separation that will be achieved and back-calciilate from the computed tray compositions, the component vapor-phase Miirphree-tray efficiencies. [Pg.1292]


See other pages where Liquid-phase mass transfer coefficient is mentioned: [Pg.85]    [Pg.1172]    [Pg.1226]    [Pg.1662]    [Pg.1658]    [Pg.1407]    [Pg.85]    [Pg.1172]    [Pg.1226]    [Pg.1662]    [Pg.1658]    [Pg.1407]    [Pg.190]    [Pg.199]    [Pg.154]    [Pg.456]    [Pg.225]    [Pg.225]    [Pg.189]    [Pg.63]    [Pg.589]    [Pg.589]    [Pg.589]    [Pg.589]    [Pg.601]    [Pg.602]    [Pg.604]    [Pg.604]    [Pg.617]    [Pg.624]    [Pg.1291]    [Pg.1292]    [Pg.1349]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Liquid mass transfer coefficient

Liquid phase coefficient

Mass coefficient

Mass liquid-phase

Mass transfer coefficient

Phase transfer coefficient

Phases—Mass Transfer

© 2024 chempedia.info