Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical catalytic reaction

Only twenty years ago, effecting a chemical reaction catalytically and in an enantioselective manner appeared to be a difficult and relatively unattainable goal to organic chemists. Clearly, many significant advances have since been made in this area, as is evident by the total syntheses summarized in this article. These accomplishments indicate that catalytic enantioselective methods can, and should be, utilized in the planning and execution stages of multistep syntheses of target molecules. In this... [Pg.158]

Examples Continuous or batch chemical reactions Catalytic cracking Electrochemistry Examples Paint formulating Powder mixing Diluting with solvent Warehousing... [Pg.44]

Normally, catalytic activity is expressed as the reaction rate per unit area of active surface (expressed as metre per gram) under given conditions. In a chemical reaction, catalytic conversion is defined as the fraction of reactants converted to products and selectivity is a function of the rate of formation of a desired product with respect to the overall conversion of the initial reactants. The reactant molecules transfer to the catalyst surface where adsorption may occur on an active site , with possible rearrangement of their bonds leading to a chemical adsorption (chemisorption), gas-catalyst reaction and the subsequent desorption of new species. The active site or phase is of high activity and selectivity for the desired products. Thus, the nature of the active sites is important. In many cases, it is not enough to have just activity. Selectivity to desired products is important and often modifiers or promoters are needed both to improve the... [Pg.3]

In this section we will present results of ab initio molecular dynamics simulations performed for more complex chemical reactions. Catalytic copolymerization of a-olefins with polar group containing monomers, chosen here as an example, is a complex process involving many elementary reactions. While for many aspects of such a process the standard approach by static quantum chemical calculations performed for the crucial reaction intermediates provides often sufficient information, for some aspects it is necessary to go beyond static computations. In the case of the process presented here, MD was priceless in exploring the potential energy surfaces for a few elementary reactions that were especially difficult for a static approach, due to a large number of alternative transition states and thus, alternative reaction pathways.77... [Pg.253]

This strategy is especially attractive in relation to analytical procedures relying on relatively slow chemical reactions (catalytic procedures and differential kinetic analysis) and/or exploiting different degrees of sample dispersion. The influence of zone recycling on sample dispersion and the potential, limitations and application range of the strategy are presented elsewhere [78,79]. [Pg.279]

Recently, in situ studies of catalytic surface chemical reactions at high pressures have been undertaken [46, 47]. These studies employed sum frequency generation (SFG) and STM in order to probe the surfaces as the reactions are occurring under conditions similar to those employed for industrial catalysis (SFG is a laser-based teclmique that is described in section A 1.7.5.5 and section BT22). These studies have shown that the highly stable adsorbate sites that are probed under vacuum conditions are not necessarily tlie same sites that are active in high-pressure catalysis. Instead, less stable sites that are only occupied at high pressures are often responsible for catalysis. Because the active... [Pg.302]

The Car-Parrinello quantum molecular dynamics technique, introduced by Car and Parrinello in 1985 [1], has been applied to a variety of problems, mainly in physics. The apparent efficiency of the technique, and the fact that it combines a description at the quantum mechanical level with explicit molecular dynamics, suggests that this technique might be ideally suited to study chemical reactions. The bond breaking and formation phenomena characteristic of chemical reactions require a quantum mechanical description, and these phenomena inherently involve molecular dynamics. In 1994 it was shown for the first time that this technique may indeed be applied efficiently to the study of, in that particular application catalytic, chemical reactions [2]. We will discuss the results from this and related studies we have performed. [Pg.433]

Apart from using an environmentally friendly solvent, it is also important to clean up the chemical reactions themselves by reducing the number and amount of side-products formed. For this purpose catalysts are a versatile tool. Catalysts have been used for thousands of years in processes such as fermentation and their importance has grown ever since. In synthetic oiganic chemistry, catalysts have found wide applications. In the majority of these catalytic processes, organic solvents are used, but also here the use of water is becoming increasingly popular . [Pg.2]

The replacement of 2-amino group by a hydrogen can be achieved by diazotization, followed by reduction with hypophosphorous acid (1-8, 13). Another method starting from 2-aminothiazole is to prepare the 2-halo-thiazole by the Sandmeyer reaction (prepared also from the 2-hydroxy-thiazole), which is then dehalogenated chemically or catalytically (1, 9, 10). [Pg.339]

Many globular proteins are enzymes They accelerate the rates of chemical reactions m biological systems but the kinds of reactions that take place are the fundamental reactions of organic chemistry One way m which enzymes accelerate these reactions is by bringing reactive func tions together m the presence of catalytically active functions of the protein... [Pg.1152]

M ass Transfer. Mass transfer in a fluidized bed can occur in several ways. Bed-to-surface mass transfer is important in plating appHcations. Transfer from the soHd surface to the gas phase is important in drying, sublimation, and desorption processes. Mass transfer can be the limiting step in a chemical reaction system. In most instances, gas from bubbles, gas voids, or the conveying gas reacts with a soHd reactant or catalyst. In catalytic systems, the surface area of a catalyst can be enormous. Eor Group A particles, surface areas of 5 to over 1000 m /g are possible. [Pg.76]

Study of the mechanism of this complex reduction-Hquefaction suggests that part of the mechanism involves formate production from carbonate, dehydration of the vicinal hydroxyl groups in the ceUulosic feed to carbonyl compounds via enols, reduction of the carbonyl group to an alcohol by formate and water, and regeneration of formate (46). In view of the complex nature of the reactants and products, it is likely that a complete understanding of all of the chemical reactions that occur will not be developed. However, the Hquefaction mechanism probably involves catalytic hydrogenation because carbon monoxide would be expected to form at least some hydrogen by the water-gas shift reaction. [Pg.26]

Catalytic Applications. The PGMs are widely used as catalysts for a variety of chemical reactions, such as hydrogenation, oxidation. ... [Pg.172]

Enzymatic Process. Chemically synthesized substrates can be converted to the corresponding amino acids by the catalytic action of an enzyme or the microbial cells as an enzyme source, t - Alanine production from L-aspartic acid, L-aspartic acid production from fumaric acid, L-cysteine production from DL-2-aminothiazoline-4-catboxyhc acid, D-phenylglycine (and D-/> -hydtoxyphenylglycine) production from DL-phenyUiydantoin (and DL-/)-hydroxyphenylhydantoin), and L-tryptophan production from indole and DL-serine have been in operation as commercial processes. Some of the other processes shown in Table 10 are at a technical level high enough to be useful for commercial production (24). Representative chemical reactions used ia the enzymatic process are shown ia Figure 6. [Pg.291]

Work in the area of simultaneous heat and mass transfer has centered on the solution of equations such as 1—18 for cases where the stmcture and properties of a soHd phase must also be considered, as in drying (qv) or adsorption (qv), or where a chemical reaction takes place. Drying simulation (45—47) and drying of foods (48,49) have been particularly active subjects. In the adsorption area the separation of multicomponent fluid mixtures is influenced by comparative rates of diffusion and by interface temperatures (50,51). In the area of reactor studies there has been much interest in monolithic and honeycomb catalytic reactions (52,53) (see Exhaust control, industrial). Eor these kinds of appHcations psychrometric charts for systems other than air—water would be useful. The constmction of such has been considered (54). [Pg.106]

As a reactant molecule from the fluid phase surrounding the particle enters the pore stmcture, it can either react on the surface or continue diffusing toward the center of the particle. A quantitative model of the process is developed by writing a differential equation for the conservation of mass of the reactant diffusing into the particle. At steady state, the rate of diffusion of the reactant into a shell of infinitesimal thickness minus the rate of diffusion out of the shell is equal to the rate of consumption of the reactant in the shell by chemical reaction. Solving the equation leads to a result that shows how the rate of the catalytic reaction is influenced by the interplay of the transport, which is characterized by the effective diffusion coefficient of the reactant in the pores, and the reaction, which is characterized by the first-order reaction rate constant. [Pg.171]


See other pages where Chemical catalytic reaction is mentioned: [Pg.339]    [Pg.170]    [Pg.138]    [Pg.2]    [Pg.4]    [Pg.3]    [Pg.246]    [Pg.301]    [Pg.164]    [Pg.13]    [Pg.339]    [Pg.170]    [Pg.138]    [Pg.2]    [Pg.4]    [Pg.3]    [Pg.246]    [Pg.301]    [Pg.164]    [Pg.13]    [Pg.246]    [Pg.938]    [Pg.2498]    [Pg.177]    [Pg.440]    [Pg.201]    [Pg.140]    [Pg.224]    [Pg.480]    [Pg.207]    [Pg.448]    [Pg.526]    [Pg.41]    [Pg.459]    [Pg.103]    [Pg.54]    [Pg.286]    [Pg.331]    [Pg.504]   
See also in sourсe #XX -- [ Pg.177 , Pg.178 , Pg.178 ]

See also in sourсe #XX -- [ Pg.177 , Pg.178 , Pg.178 ]




SEARCH



Catalytic reactions fine chemical synthesis

Chemical catalytic

Chemical kinetics of heterogeneous catalytic reactions

Chemical molecules, catalytic reaction network

Diffusion and Heterogeneous Chemical Reactions in Isothermal Catalytic Pellets

Diffusion and Pseudo-Homogeneous Chemical Reactions in Isothermal Catalytic Pellets

Homogeneous catalytic reactions fast chemical reaction

Homogeneous catalytic reactions moderate chemical reaction

Homogeneous catalytic reactions slow chemical reaction

Ridil s chemical mechanisms of the catalytic reaction

© 2024 chempedia.info