Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical microscope

SECM is a scaiming-probe teclmiqiie introduced by Bard et aJ in 1989 [49, and M ] based on previous studies by the same group on in situ STM [ ] and simultaneous work by Engstrom et aJ [53 and M], who were the first to show that an amperometric microelectrode could be used as a local probe to map the concentration profile of a larger active electrode. SECM may be envisaged as a chemical microscope based on faradic current changes as a microelectrode is moved across a surface of a sample. It has proved iisefiil for... [Pg.1940]

Since its inception about 15 year ago, MALDI-IMS has been developed into a powerful and versatile tool for biomedical research. It allows for the investigation of the spatial distribution of molecules at complex surfaces. The combination of molecular speciation with local analysis makes a chemical microscope that can be used for the direct biomolecular characterization of histological tissue section surface. However, successful detection of the analytes of interest at the desired spatial resolution requires careful attention to several steps in the IMS protocol matrix selection, matrix coating, data acquisition, and data processing. MALDI-IMS is increasingly playing an important role in the drug discovery and development and disease treatment. [Pg.413]

The characterization of liposomes is an important task and many analytical techniques have been employed, Thermodynamic, mechanical, chemical, microscopic, spectroscopic, and chromatographic techniques have being used worldwide in order to test the physical and chemical, characteristics of liposomal formulations such as lamellerity, encapsulation efficiency and their stability overtime. [Pg.193]

Additional work being conducted in pharmaceutical groups includes chemical microscopical characterization of dilituric acid and its complexes (77), characterization of the physicochemical properties of pharmaceuticals (78), and solid-state investigations incorporating hot-stage microspectroscopy (79,80). [Pg.260]

The ion microprobe was early recognized [2-4] to be a potential chemical microscope for many elements, and qualitative analyses rapidly became routine, especially in the study of metals and doped semiconductors. The ion microprobe uses a focused primary ion beam (O , 02, Cs ) to sputter a small volume of material from a target (usually a solid sample). A fraction of the sputtered atoms, characteristic of the surface composition of the sample, are ionized these secondary ions are the source of information in secondary ion mass spectrometry (SIMS) (Figure 43.1). [Pg.1017]

The following devices and equipment are essential in the spot test analysis laboratory hand balance, microanalytical balance, torsion balance, pH meter, UV lamp, IR lamp, centrifuge, hot closet, dr5ung apparatus, ignition furnace, hot plates, water baths, micro-distillation equipment, electrographic apparatus, cooling block, spectrophotometer, stereomicroscope, chemical microscope (or polarization microscope), a melting point apparatus, an electric clock. [Pg.35]

NMRI has the capability of measuring inhomogeneities in finished articles by a noninvasive and nondestructive method. Defea or nonunifoim areas of the polymeric materials will be clearly shown in the NMR image. NMRI may be considered as a type of chemical microscope and, as such, the concept transcends any other methodology for generating images. [Pg.151]

In the last years one can find a strong reorientation of most microscopical methods to study objects in natural (or adjustable) conditions without preparation. Microscopical visualization without vacuum and coating allows maintaining the natural specimen structure as well as examining its behavior under external influences (loading, chemical reactions, interaction with other solids, liquids, gases etc.)... [Pg.579]

Fig. X-16. (a) Microscopic appearance of the three-phase contact region, (b) Wetting meniscus against a vertical plate showing the meniscus only, adsorbed film only, and joined profile. (From Ref. 226 with permission. Copyright 1980 American Chemical Society.)... Fig. X-16. (a) Microscopic appearance of the three-phase contact region, (b) Wetting meniscus against a vertical plate showing the meniscus only, adsorbed film only, and joined profile. (From Ref. 226 with permission. Copyright 1980 American Chemical Society.)...
It turns out that there is another branch of mathematics, closely related to tire calculus of variations, although historically the two fields grew up somewhat separately, known as optimal control theory (OCT). Although the boundary between these two fields is somewhat blurred, in practice one may view optimal control theory as the application of the calculus of variations to problems with differential equation constraints. OCT is used in chemical, electrical, and aeronautical engineering where the differential equation constraints may be chemical kinetic equations, electrical circuit equations, the Navier-Stokes equations for air flow, or Newton s equations. In our case, the differential equation constraint is the TDSE in the presence of the control, which is the electric field interacting with the dipole (pemianent or transition dipole moment) of the molecule [53, 54, 55 and 56]. From the point of view of control theory, this application presents many new features relative to conventional applications perhaps most interesting mathematically is the admission of a complex state variable and a complex control conceptually, the application of control teclmiques to steer the microscopic equations of motion is both a novel and potentially very important new direction. [Pg.268]

There are many other experiments in which surface atoms have been purposely moved, removed or chemically modified with a scanning probe tip. For example, atoms on a surface have been induced to move via interaction with the large electric field associated with an STM tip [78]. A scaiming force microscope has been used to create three-dimensional nanostructures by pushing adsorbed particles with the tip [79]. In addition, the electrons that are tunnelling from an STM tip to the sample can be used as sources of electrons for stimulated desorption [80]. The tuimelling electrons have also been used to promote dissociation of adsorbed O2 molecules on metal or semiconductor surfaces [81, 82]. [Pg.311]

Conservation laws at a microscopic level of molecular interactions play an important role. In particular, energy as a conserved variable plays a central role in statistical mechanics. Another important concept for equilibrium systems is the law of detailed balance. Molecular motion can be viewed as a sequence of collisions, each of which is akin to a reaction. Most often it is the momentum, energy and angrilar momentum of each of the constituents that is changed during a collision if the molecular structure is altered, one has a chemical reaction. The law of detailed balance implies that, in equilibrium, the number of each reaction in the forward direction is the same as that in the reverse direction i.e. each microscopic reaction is in equilibrium. This is a consequence of the time reversal syimnetry of mechanics. [Pg.378]

Gas-phase reactions play a fundamental role in nature, for example atmospheric chemistry [1, 2, 3, 4 and 5] and interstellar chemistry [6], as well as in many teclmical processes, for example combustion and exliaust fiime cleansing [7, 8 and 9], Apart from such practical aspects the study of gas-phase reactions has provided the basis for our understanding of chemical reaction mechanisms on a microscopic level. The typically small particle densities in the gas phase mean that reactions occur in well defined elementary steps, usually not involving more than three particles. [Pg.759]

Many additional refinements have been made, primarily to take into account more aspects of the microscopic solvent structure, within the framework of diffiision models of bimolecular chemical reactions that encompass also many-body and dynamic effects, such as, for example, treatments based on kinetic theory [35]. One should keep in mind, however, that in many cases die practical value of these advanced theoretical models for a quantitative analysis or prediction of reaction rate data in solution may be limited. [Pg.845]

As a final point, it should again be emphasized that many of the quantities that are measured experimentally, such as relaxation rates, coherences and time-dependent spectral features, are complementary to the thennal rate constant. Their infomiation content in temis of the underlying microscopic interactions may only be indirectly related to the value of the rate constant. A better theoretical link is clearly needed between experimentally measured properties and the connnon set of microscopic interactions, if any, that also affect the more traditional solution phase chemical kinetics. [Pg.891]

Of great interest to physical chemists and chemical physicists are the broadening mechanisms of Raman lines in the condensed phase. Characterization of tliese mechanisms provides infomiation about the microscopic dynamical behaviour of material. The line broadening is due to the interaction between the Raman active chromophore and its environment. [Pg.1211]

Figure Bl.19.1. Principle of operation of a scanning tiimrelling microscope. The x- andj -piezodrives scan the tip across the surface. In one possible mode of operation, the current from the tip is fed into a feedback loop that controls the voltage to die z-piezo, to maintam constant current. The Ime labelled z-displacement shows the tip reacting both to morphological and chemical (i.e. electronic) inliomogeneities. (Taken from [213].)... Figure Bl.19.1. Principle of operation of a scanning tiimrelling microscope. The x- andj -piezodrives scan the tip across the surface. In one possible mode of operation, the current from the tip is fed into a feedback loop that controls the voltage to die z-piezo, to maintam constant current. The Ime labelled z-displacement shows the tip reacting both to morphological and chemical (i.e. electronic) inliomogeneities. (Taken from [213].)...
Hamers R, Avouris P and Boszo F 1987 Imaging of chemical-bond formation with the scanning tunnelling microscope NH, dissociation on Si(OOI) Rhys. Rev. Lett. 59 2071... [Pg.1721]

The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

Hydrogen-bonded clusters are an important class of molecular clusters, among which small water clusters have received a considerable amount of attention [148, 149]. Solvated cluster ions have also been produced and studied [150, 151]. These solvated clusters provide ideal model systems to obtain microscopic infonnation about solvation effect and its influence on chemical reactions. [Pg.2400]

Figure C 1.5.13. Schematic diagram of an experimental set-up for imaging 3D single-molecule orientations. The excitation laser with either s- or p-polarization is reflected from the polymer/water boundary. Molecular fluorescence is imaged through an aberrating thin water layer, collected with an inverted microscope and imaged onto a CCD array. Aberrated and unaberrated emission patterns are observed for z- and xr-orientated molecules, respectively. Reprinted with pennission from Bartko and Dickson [148]. Copyright 1999 American Chemical Society. Figure C 1.5.13. Schematic diagram of an experimental set-up for imaging 3D single-molecule orientations. The excitation laser with either s- or p-polarization is reflected from the polymer/water boundary. Molecular fluorescence is imaged through an aberrating thin water layer, collected with an inverted microscope and imaged onto a CCD array. Aberrated and unaberrated emission patterns are observed for z- and xr-orientated molecules, respectively. Reprinted with pennission from Bartko and Dickson [148]. Copyright 1999 American Chemical Society.
Catalysis spans chemistry, chemical engineering, materials science and biology. The goal here is to enliven the subject with diverse examples showing the microscopic details of catalysis. [Pg.2697]

The atomic force microscope (ATM) provides one approach to the measurement of friction in well defined systems. The ATM allows measurement of friction between a surface and a tip with a radius of the order of 5-10 nm figure C2.9.3 a)). It is the tme realization of a single asperity contact with a flat surface which, in its ultimate fonn, would measure friction between a single atom and a surface. The ATM allows friction measurements on surfaces that are well defined in tenns of both composition and stmcture. It is limited by the fact that the characteristics of the tip itself are often poorly understood. It is very difficult to detennine the radius, stmcture and composition of the tip however, these limitations are being resolved. The AFM has already allowed the spatial resolution of friction forces that exlribit atomic periodicity and chemical specificity [3, K), 13]. [Pg.2745]

The concept of macroscopic kinetics avoids the difficulties of microscopic kinetics [46, 47] This method allows a very compact description of different non-thennal plasma chemical reactors working with continuous gas flows or closed reactor systems. The state of the plasma chemical reaction is investigated, not in the active plasma zone, but... [Pg.2810]

The classical microscopic description of molecular processes leads to a mathematical model in terms of Hamiltonian differential equations. In principle, the discretization of such systems permits a simulation of the dynamics. However, as will be worked out below in Section 2, both forward and backward numerical analysis restrict such simulations to only short time spans and to comparatively small discretization steps. Fortunately, most questions of chemical relevance just require the computation of averages of physical observables, of stable conformations or of conformational changes. The computation of averages is usually performed on a statistical physics basis. In the subsequent Section 3 we advocate a new computational approach on the basis of the mathematical theory of dynamical systems we directly solve a... [Pg.98]


See other pages where Chemical microscope is mentioned: [Pg.70]    [Pg.319]    [Pg.147]    [Pg.215]    [Pg.165]    [Pg.460]    [Pg.508]    [Pg.546]    [Pg.568]    [Pg.288]    [Pg.193]    [Pg.70]    [Pg.319]    [Pg.147]    [Pg.215]    [Pg.165]    [Pg.460]    [Pg.508]    [Pg.546]    [Pg.568]    [Pg.288]    [Pg.193]    [Pg.664]    [Pg.834]    [Pg.869]    [Pg.887]    [Pg.1278]    [Pg.1623]    [Pg.1666]    [Pg.1714]    [Pg.1939]    [Pg.2400]    [Pg.2517]    [Pg.78]   
See also in sourсe #XX -- [ Pg.1017 ]




SEARCH



Chemical components microscopic

Chemical etching, microscopic evaluation

Microscopes and Chemical Microscopy

Microscopic investigations chemical reactions

Microscopic particles, liquid phase chemical

Scanning electron microscop chemical etching

© 2024 chempedia.info