Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical automation

Preplate etch and rinse tanks Koroseal-lined tanks for plating steps preplating and plating chemicals automated systems available. [Pg.540]

When we foster ink/water contact with additives like isopropanol, we overcome chemical barriers to water-in-ink mixing. The mixing process may become as rapid as the printing process it becomes less dependent on details of ink and fountain solution chemistry, press settings and printing format. The process is easier to operate. We have introduced a measure of chemical automation. [Pg.355]

If you store chemicals in your laboratory, you need to have a chemical inventory that specifies the chemical name, molecular formula, CAS number, source, container size, date received, and location. Individual labs may also track other information about chemicals. Automated chemical inventory systems may require more information. There are commercial inventory systems available and it is likely that you will not have any choice in this selection." ... [Pg.519]

The effectiveness of the approach is demonstrated on two rqjresentative NDT techniques intapretation of data acquired with an ultrasonic rail inspection system and interpretation of eddy-current data from heat exchangers in (petro-)chemical industry. The results show that it is possible to provide a high level of automation in combination with efficient operator support for highly variable NDT measurements where up to now use of automated interpretation was only limited. [Pg.97]

In chemistry and chemical engineering, expert systems are used for various tasks ranging from laboratory automation or reaction kinetics to the design of syntheses or the simulations of processes [24]. The application of expert systems in chemistry is described in more detail in Chapter IX, Section 2 of the Handbook,... [Pg.480]

Thus, in the area of combinatorial chemistry, many compounds are produced in short time ranges, and their structures have to be confirmed by analytical methods. A high degree of automation is required, which has fueled the development of software that can predict NMR spectra starting from the chemical structure, and that calculates measures of similarity between simulated and experimental spectra. These tools are obviously also of great importance to chemists working with just a few compounds at a time, using NMR spectroscopy for structure confirmation. [Pg.518]

A R, D P Dolata and K Prout 1990. Automated Conformational Analysis and Structure Generation Algorithms for Molecular Perception. Journal of Chemical Information and Computer Science 30 316-324. [Pg.524]

P Willett, J Bradshaw and D V S Green 1999. Selecting Combinatorial Libraries to Optimize rsity and Physical Properties. Journal of Chemical Information and Computer Science 39 169-177. 1 and A W R Payne 1995. A Genetic Algorithm for the Automated Generation of Molecules in Constraints. Journal of Computer-Aided Molecular Design 9 181-202. [Pg.738]

CODESSA can compute or import over 500 molecular descriptors. These can be categorized into constitutional, topological, geometric, electrostatic, quantum chemical, and thermodynamic descriptors. There are automated procedures that will omit missing or bad descriptors. Alternatively, the user can manually define any subset of structures or descriptors to be used. [Pg.354]

Chemical kinetic methods of analysis continue to find use for the analysis of a variety of analytes, most notably in clinical laboratories, where automated methods aid in handling a large volume of samples. In this section several general quantitative applications are considered. [Pg.636]

Time, Cost, and Equipment Automated chemical kinetic methods of analysis provide a rapid means for analyzing samples, with throughputs ranging from several hundred to several thousand determinations per hour. The initial start-up costs, however, may be fairly high because an automated analysis requires a dedicated instrument designed to meet the specific needs of the analysis. When handled manually, chemical kinetic methods can be accomplished using equipment and instrumentation routinely available in most laboratories. Sample throughput, however, is much lower than with automated methods. [Pg.642]

Chemical kinetic methods are particularly useful for reactions that are too slow for a convenient analysis by other analytical methods. In addition, chemical kinetic methods are often easily adapted to an automated analysis. For reactions with fast kinetics, automation allows hundreds (or more) of samples to be analyzed per hour. Another important application of chemical kinetic... [Pg.659]

Chemical Design Automation News, Elsevier Science, Inc., New York, 1985—1997. [Pg.172]

The development section serves as an intermediary between laboratory and industrial scale and operates the pilot plant. A dkect transfer from the laboratory to industrial-scale processes is stiH practiced at some small fine chemicals manufacturers, but is not recommended because of the inherent safety, environmental, and economic risks. Both equipment and plant layout of the pilot plant mirror those of an industrial multipurpose plant, except for the size (typically 100 to 2500 L) of reaction vessels and the degree of process automation. [Pg.436]

Detecting the presence of small, even invisible, amounts of blood is routine. Physical characteristics of dried stains give minimal information, however, as dried blood can take on many hues. Many of the chemical tests for the presence of blood rely on the catalytic peroxidase activity of heme (56,57). Minute quantities of blood catalyze oxidation reactions between colorless materials, eg, phenolphthalein, luco malachite green, luminol, etc, to colored or luminescent ones. The oxidant is typically hydrogen peroxide or sodium perborate (see Automated instrumentation,hematology). [Pg.487]

Immunosensors promise to become principal players ia chemical, diagnostic, and environmental analyses by the latter 1990s. Given the practical limits of immunosensors (low ppb or ng/mL to mid-pptr or pg/mL) and their portabiUty, the primary appHcation is expected to be as rapid screening devices ia noncentralized clinical laboratories, ia iatensive care faciUties, and as bedside monitors, ia physicians offices, and ia environmental and iadustrial settings (49—52). Industrial appHcations for immunosensors will also include use as the basis for automated on-line or flow-injection analysis systems to analyze and control pharmaceutical, food, and chemical processing lines (53). Immunosensors are not expected to replace laboratory-based immunoassays, but to open up new appHcations for immunoassay-based technology. [Pg.30]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]


See other pages where Chemical automation is mentioned: [Pg.23]    [Pg.516]    [Pg.107]    [Pg.313]    [Pg.396]    [Pg.475]    [Pg.516]    [Pg.519]    [Pg.118]    [Pg.524]    [Pg.342]    [Pg.1164]    [Pg.634]    [Pg.331]    [Pg.333]    [Pg.206]    [Pg.322]    [Pg.438]    [Pg.21]    [Pg.21]    [Pg.118]    [Pg.127]    [Pg.394]    [Pg.397]    [Pg.260]    [Pg.3]    [Pg.297]   
See also in sourсe #XX -- [ Pg.169 ]




SEARCH



Automated chemical control

Automated chemical dosing

Automated chemical synthesis

Automation in a Chemical Laboratory

Automation of wet chemical methods

Chemical Design Automation News

Chemical analyses, standard approach automation

Chemical control, automation

Chemical control, automation continuous analysis

Chemical control, automation nature

Chemical separation automated

© 2024 chempedia.info