Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of chemical kinetics methods

Despite the variety of methods that had been developed, by 1960 kinetic methods were no longer in common use. The principal limitation to a broader acceptance of chemical kinetic methods was their greater susceptibility to errors from uncontrolled or poorly controlled variables, such as temperature and pH, and the presence of interferents that activate or inhibit catalytic reactions. Many of these limitations, however, were overcome during the 1960s, 1970s, and 1980s with the development of improved instrumentation and data analysis methods compensating for these errors. ... [Pg.624]

Selectivity The analysis of closely related compounds, as we have seen in earlier chapters, is often complicated by their tendency to interfere with one another. To overcome this problem, the analyte and interferent must first be separated. An advantage of chemical kinetic methods is that conditions can often be adjusted so that the analyte and interferent have different reaction rates. If the difference in rates is large enough, one species may react completely before the other species has a chance to react. For example, many enzymes selectively cat-... [Pg.640]

A brief history of chemical kinetic methods of analysis is found in the following text. [Pg.664]

Design and operation of chemical reactors in a chemical industry profoundly influence the impact that the industry may have on the surrounding environment. Understanding different types of reactions and characterising their kinetic behaviour are important for optimal design and operation of chemical reactors. This chapter outlines the basic principles of chemical kinetics, methods of obtaining rate equations for different types of reactions, principles of catalysis and kinetics of catalytic reactions. A brief introduction on the types and classification of reactors is presented in this chapter. [Pg.9]

Every chemical reaction occurs at a finite rate and, therefore, can potentially serve as the basis for a chemical kinetic method of analysis. To be effective, however, the chemical reaction must meet three conditions. First, the rate of the chemical reaction must be fast enough that the analysis can be conducted in a reasonable time, but slow enough that the reaction does not approach its equilibrium position while the reagents are mixing. As a practical limit, reactions reaching equilibrium within 1 s are not easily studied without the aid of specialized equipment allowing for the rapid mixing of reactants. [Pg.624]

A final requirement for a chemical kinetic method of analysis is that it must be possible to monitor the reaction s progress by following the change in concentration for one of the reactants or products as a function of time. Which species is used is not important thus, in a quantitative analysis the rate can be measured by monitoring the analyte, a reagent reacting with the analyte, or a product. For example, the concentration of phosphate can be determined by monitoring its reaction with Mo(VI) to form 12-molybdophosphoric acid (12-MPA). [Pg.625]

Representative Method Although each chemical kinetic method has its own unique considerations, the determination of creatinine in urine based on the kinetics of its reaction with picrate provides an instructive example of a typical procedure. [Pg.632]

Chemical kinetic methods of analysis continue to find use for the analysis of a variety of analytes, most notably in clinical laboratories, where automated methods aid in handling a large volume of samples. In this section several general quantitative applications are considered. [Pg.636]

Chemical kinetic methods have been applied to the quantitative analysis of a number of enzymes and substrates.One example, is the determination of glucose based on its oxidation by the enzyme glucose oxidase. ... [Pg.637]

Plot of equation 13.18 showing limits for which a chemical kinetic method of analysis can be used to determine the concentration of a catalyst or a substrate. [Pg.637]

Noncatalytic Reactions Chemical kinetic methods are not as common for the quantitative analysis of analytes in noncatalytic reactions. Because they lack the enhancement of reaction rate obtained when using a catalyst, noncatalytic methods generally are not used for the determination of analytes at low concentrations. Noncatalytic methods for analyzing inorganic analytes are usually based on a com-plexation reaction. One example was outlined in Example 13.4, in which the concentration of aluminum in serum was determined by the initial rate of formation of its complex with 2-hydroxy-1-naphthaldehyde p-methoxybenzoyl-hydrazone. ° The greatest number of noncatalytic methods, however, are for the quantitative analysis of organic analytes. For example, the insecticide methyl parathion has been determined by measuring its rate of hydrolysis in alkaline solutions. [Pg.638]

Chemical kinetic methods also find use in determining rate constants and elucidating reaction mechanisms. These applications are illustrated by two examples from the chemical kinetic analysis of enzymes. [Pg.638]

Time, Cost, and Equipment Automated chemical kinetic methods of analysis provide a rapid means for analyzing samples, with throughputs ranging from several hundred to several thousand determinations per hour. The initial start-up costs, however, may be fairly high because an automated analysis requires a dedicated instrument designed to meet the specific needs of the analysis. When handled manually, chemical kinetic methods can be accomplished using equipment and instrumentation routinely available in most laboratories. Sample throughput, however, is much lower than with automated methods. [Pg.642]

Although similar to chemical kinetic methods of analysis, radiochemical methods are best classified as nuclear kinetic methods. In this section we review the kinetics of radioactive decay and examine several quantitative and characterization applications. [Pg.643]

In general, the sensitivity of FIA is less than that for conventional methods of analysis for two principal reasons. First, as with chemical kinetic methods, measurements in FIA are made under nonequilibrium conditions when the signal has yet to reach its maximum value. Second, dispersion of the sample as it progresses through the system results in its dilution. As discussed earlier, however, the variables that influence sensitivity are known. As a result the FIA manifold can be designed to optimize the sensitivity of the analysis. [Pg.658]

Kinetic methods of analysis are based on the rate at which a chemical or physical process involving the analyte occurs. Three types of kinetic methods are discussed in this chapter chemical kinetic methods, radiochemical methods, and flow injection analysis. [Pg.659]

Chemical kinetic methods are particularly useful for reactions that are too slow for a convenient analysis by other analytical methods. In addition, chemical kinetic methods are often easily adapted to an automated analysis. For reactions with fast kinetics, automation allows hundreds (or more) of samples to be analyzed per hour. Another important application of chemical kinetic... [Pg.659]

The following are useful resources for further information regarding chemical kinetic methods of analysis. [Pg.664]

Chemistry can be divided (somewhat arbitrarily) into the study of structures, equilibria, and rates. Chemical structure is ultimately described by the methods of quantum mechanics equilibrium phenomena are studied by statistical mechanics and thermodynamics and the study of rates constitutes the subject of kinetics. Kinetics can be subdivided into physical kinetics, dealing with physical phenomena such as diffusion and viscosity, and chemical kinetics, which deals with the rates of chemical reactions (including both covalent and noncovalent bond changes). Students of thermodynamics learn that quantities such as changes in enthalpy and entropy depend only upon the initial and hnal states of a system consequently thermodynamics cannot yield any information about intervening states of the system. It is precisely these intermediate states that constitute the subject matter of chemical kinetics. A thorough study of any chemical reaction must therefore include structural, equilibrium, and kinetic investigations. [Pg.1]

The overall reaction stoichiometry having been established by conventional methods, the first task of chemical kinetics is essentially the qualitative one of establishing the kinetic scheme in other words, the overall reaction is to be decomposed into its elementary reactions. This is not a trivial problem, nor is there a general solution to it. Much of Chapter 3 deals with this issue. At this point it is sufficient to note that evidence of the presence of an intermediate is often critical to an efficient solution. Modem analytical techniques have greatly assisted in the detection of reactive intermediates. A nice example is provided by a study of the pyridine-catalyzed hydrolysis of acetic anhydride. Other kinetic evidence supported the existence of an intermediate, presumably the acetylpyridinium ion, in this reaction, but it had not been detected directly. Fersht and Jencks observed (on a time scale of tenths of a second) the rise and then fall in absorbance of a solution of acetic anhydride upon treatment with pyridine. This requires that the overall reaction be composed of at least two steps, and the accepted kinetic scheme is as follows. [Pg.7]

In the context of chemical kinetics, the eigenvalue technique and the method of Laplace transforms have similar capabilities, and a choice between them is largely dependent upon the amount of algebraic labor required to reach the final result. Carpenter discusses matrix operations that can reduce the manipulations required to proceed from the eigenvalues to the concentration-time functions. When dealing with complex reactions that include irreversible steps by the eigenvalue method, the system should be treated as an equilibrium system, and then the desired special case derived from the general result. For such problems the Laplace transform method is more efficient. [Pg.96]

In the last decades, Chemical Physics has attracted an ever increasing amount of interest. The variety of problems, such as those of chemical kinetics, molecular physics, molecular spectros-copy, transport processes, thermodynamics, the study of the state of matter, and the variety of experimental methods used, makes the great development of this field understandable. But the consequence of this breadth of subject matter has been the scattering of the relevant literature in a great number of publications. [Pg.417]

The determination of the laser-generated populations rij t) is infinitely more delicate. Computer simulations can certainly be applied to study population relaxation times of different electronic states. However, such simulations are no longer completely classical. Semiclassical simulations have been invented for that purpose, and the methods such as surface hopping were proposed. Unfortunately, they have not yet been employed in the present context. Laser spectroscopic data are used instead the decay of the excited state populations is written n (t) = exp(—t/r ), where Xj is the experimentally determined population relaxation time. The laws of chemical kinetics may also be used when necessary. Proceeding in this way, the rapidly varying component of AS q, t) can be determined. [Pg.272]

A shift in the velocity constant such as is observed in bulk esterification is the exception rather than the rule. A source of more general concern is the enormous increase in viscosity which accompanies polymerization. Both theory and experimental results indicate that this factor usually is of no importance except under the extreme conditions previously mentioned. Consequently, the velocity coefficient usually remains constant throughout the polymerization (or degradation) process. Barring certain abnormalities which enter when the velocity coefficient is sensitive to the environmental changes accompanying the polymerization process, application of the ordinary methods of chemical kinetics to polymerizations and other processes involving polymer molecules usually is permissible. [Pg.103]

The rate of chemical reaction must be measured and cannot be predicted from properties of chemical species. A thorough discussion of experimental methods cannot be given at this point, since it requires knowledge of types of chemical reactors that can be used, and the ways in which rate of reaction can be represented. However, it is useful to consider the problem of experimental determination even in a preliminary way, since it provides a better understanding of the methods of chemical kinetics from the outset. [Pg.5]

The primary use of chemical kinetics in CRE is the development of a rate law (for a simple system), or a set of rate laws (for a kinetics scheme in a complex system). This requires experimental measurement of rate of reaction and its dependence on concentration, temperature, etc. In this chapter, we focus on experimental methods themselves, including various strategies for obtaining appropriate data by means of both batch and flow reactors, and on methods to determine values of rate parameters. (For the most part, we defer to Chapter 4 the use of experimental data to obtain values of parameters in particular forms of rate laws.) We restrict attention to single-phase, simple systems, and the dependence of rate on concentration and temperature. It is useful at this stage, however, to consider some features of a rate law and introduce some terminology to illustrate the experimental methods. [Pg.42]

Kinetic methods describing the evolution of distributions of molecules by systems of kinetic differential equations (obeying either the classic mass action law of chemical kinetics or the generalized Smoluchowski coagulation process). [Pg.128]

In their subsequent works, the authors treated directly the nonlinear equations of evolution (e.g., the equations of chemical kinetics). Even though these equations cannot be solved explicitly, some powerful mathematical methods can be used to determine the nature of their solutions (rather than their analytical form). In these equations, one can generally identify a certain parameter k, which measures the strength of the external constraints that prevent the system from reaching thermodynamic equilibrium. The system then tends to a nonequilibrium stationary state. Near equilibrium, the latter state is unique and close to the former its characteristics, plotted against k, lie on a continuous curve (the thermodynamic branch). It may happen, however, that on increasing k, one reaches a critical bifurcation value k, beyond which the appearance of the... [Pg.12]

In order to measure the magnitude of the chemical interactions between various ions and buffer gases, approaches that are based on the measurements of either equilibrium or rate constants for ionic processes can be envisioned. An example of a kinetic method is described in the following. The unimolecular kinetic process known as thermal electron detachment (TED) for negative ions (NT -> M + e), should be particularly sensitive to a chemical effect of the buffer gas. This is because the rate of TED will be given by = constant x where the electron... [Pg.228]


See other pages where Of chemical kinetics methods is mentioned: [Pg.626]    [Pg.639]    [Pg.87]    [Pg.16]    [Pg.626]    [Pg.639]    [Pg.87]    [Pg.16]    [Pg.2966]    [Pg.625]    [Pg.634]    [Pg.639]    [Pg.640]    [Pg.640]    [Pg.659]    [Pg.311]    [Pg.13]    [Pg.16]    [Pg.562]    [Pg.428]    [Pg.39]    [Pg.263]   
See also in sourсe #XX -- [ Pg.638 , Pg.639 ]




SEARCH



Chemical kinetics

Kinetic Chemicals

Kinetic methods

Kinetics method

© 2024 chempedia.info