Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical analysis experience

Fourier transform infrared spectroscopy was applied to the study of lac resin, a complex natural resin of insect origin, and some of its derivatives. The results obtained by this method are compared with those from earlier studies that used classical methods of chemical analysis. Experiments include the preparation of hard and soft resins, dewaxed lac, ammoniated lac, lac acetal, halogenated lac, hydrolysed lac, rebuilt lac (rebulac), and the preparation of lac metal salts. It is found that FTIR has several advantages over classical methods, but that FTIR data requires supplementing by other instrumental techniques such as FT-Raman spectroscopy and solid state nuclear magnetic resonance. 21 refs. [Pg.121]

The following experiments may he used to illustrate the application of kinetic methods of analysis. Experiments are divided into two groups those based on chemical kinetics and those using flow injection analysis. Each suggested experiment includes a brief description. [Pg.659]

One other very important attribute of photoemitted electrons is the dependence of their kinetic energy on chemical environment of the atom from which they originate. This feature of the photoemission process is called the chemical shift of and is the basis for chemical information about the sample. In fact, this feature of the xps experiment, first observed by Siegbahn in 1958 for a copper oxide ovedayer on a copper surface, led to his original nomenclature for this technique of electron spectroscopy for chemical analysis or esca. [Pg.277]

Most of the references listed refer to a specific chemical kinetics experiment in which the corresponding method analysis was used to obtain the rate data. [Pg.168]

The application of a selective pyrolysis process to the recovery of chemicals from waste PU foam is described. The reaction conditions are controlled so that target products can be collected directly from the waste stream in high yields. Molecular beam mass spectrometry is used in small-scale experiments to analyse the reaction products in real time, enabling the effects of process parameters such as temperature, catalysts and co-reagents to be quickly screened. Fixed bed and fluidised bed reactors are used to provide products for conventional chemical analysis to determine material balances and to test the concept under larger scale conditions. Results are presented for the recycling of PU foams from vehicle seats and refrigerators. 12 refs. [Pg.79]

A relatively new arrangement for the study of the interfacial region is achieved by so-called emersed electrodes. This experimental technique developed by Hansen et al. consists of fully or partially removing the electrode from the solution at a constant electrical potential. This ex situ experiment (Fig. 9), usually called an emersion process, makes possible an analysis of an electrode in an ambient atmosphere or an ultrahigh vacuum (UHV). Research using modem surface analysis such as electron spectroscopy for chemical analysis (ESCA), electroreflectance, as well as surface resistance, electrical current, and in particular Volta potential measurements, have shown that the essential features (e.g., the charge on... [Pg.31]

Audits of each phase of the study should include personnel training, preparation of collection forms, application calibration, each sample collection procedure, sample transport, each type of chemical analysis, data recording, data entry, data verification and data storage. Data collection in the field is often tedious if automated logging devices are not in place. To ensure data integrity, the paper and ink used for field studies should be waterproof. Each data collection form should contain appropriate locations for information detailing the time and location of sample collection, sample transport and sample analysis. Data collection forms should be stored in an orderly fashion in a secure location immediately upon return of field teams from the field at the end of each day. It is also important for data quality for studies to collect necessary field data seven days per week when required. In our experience, poor study quality is likely when field sample and data collection do not proceed on weekends. [Pg.946]

The above conclusion is confirmed by experiments were ethylene was led into the vial with an antimony film treated by hydrogen atoms. This experiment provides an example of a qualitative chemical analysis of atom hydrogen. In is known [21] that capturing of hydrogen atoms by molecules of ethylene develops with high rate resulting in creation of... [Pg.360]

In this work, a detailed kinetic model for the Fischer-Tropsch synthesis (FTS) has been developed. Based on the analysis of the literature data concerning the FT reaction mechanism and on the results we obtained from chemical enrichment experiments, we have first defined a detailed FT mechanism for a cobalt-based catalyst, explaining the synthesis of each product through the evolution of adsorbed reaction intermediates. Moreover, appropriate rate laws have been attributed to each reaction step and the resulting kinetic scheme fitted to a comprehensive set of FT data describing the effect of process conditions on catalyst activity and selectivity in the range of process conditions typical of industrial operations. [Pg.294]

All of the organohalogen compounds studied were commercial products obtained from various manufacturers and used as received. Only the DBDPO was purified further by recrystallization for some of the chromatography and thermal analysis experiments. Samples of antimony trioxide and antimony pentoxide were also obtained from commercial sources. The ultrapure antimony trioxide, bismuth trioxide, bismuth metal, antimony metal, dibenzofuran and diphenyl ether were all obtained from Aldrich Chemicals. The poly(propylene) (PP) resin was 0.7 mfi, food grade from Novamont and the poly(ethylene) was unstabilized, high molecular weight, HDPE from American Hoechst. [Pg.113]

Are the equilibrium constants for the important reactions in the thermodynamic dataset sufficiently accurate The collection of thermodynamic data is subject to error in the experiment, chemical analysis, and interpretation of the experimental results. Error margins, however, are seldom reported and never seem to appear in data compilations. Compiled data, furthermore, have generally been extrapolated from the temperature of measurement to that of interest (e.g., Helgeson, 1969). The stabilities of many aqueous species have been determined only at room temperature, for example, and mineral solubilities many times are measured at high temperatures where reactions approach equilibrium most rapidly. Evaluating the stabilities and sometimes even the stoichiometries of complex species is especially difficult and prone to inaccuracy. [Pg.24]

Gas-phase Kinetics. A better appreciation of the experiments to be discussed later will be obtained after a review of some experimental aspects of the transient method. Here we deal with experiments at atmospheric pressure. A flow sheet for kinetic measurements is given in Fig. 1, a descendant of that first given by Bennett et al. (15). Chemical analysis of the gases during transients is ideally done by a mass spectrometer, although Kobayashi and Kobayashi (4 ) used a number of gas chromatographs in order to get samples sufficiently frequently. [Pg.2]

The samples were air-dried at room temperature, sieved to < 63 pm and analysed by x-ray diffraction (XRD) and scanning electron microscopy combined with an energy dispersive system (SEM-EDS). For chemical analysis, samples were submitted to an extraction with Aqua Regia and analysed by inductively coupled plasma-optical emission spectrometry (ICP/OES). Firing experiments were performed following the procedure described by Brindley Brown (1980). [Pg.376]

Experiment 15 Synthesis of a Coordination Compound and Its Chemical Analysis... [Pg.314]

NMR is an incredibly versatile tool that can be used for a wide array of applications, including determination of molecular structure, monitoring of molecular dynamics, chemical analysis, and imaging. NMR has found broad application in the food science and food processing areas (Belton et al., 1993, 1995, 1999 Colquhoun and Goodfellow, 1994 Eads, 1999 Gil et al., 1996 Hills, 1998 O Brien, 1992 Schmidt et al., 1996 Webb et al., 1995, 2001). The ability of NMR to quantify food properties and their spatiotemporal variation in a nondestructive, noninvasive manner is especially useful. In turn, these properties can then be related to the safety, stability, and quality of a food (Eads, 1999). Because food materials are transparent to the radio frequency electromagnetic radiation required in an NMR experiment, NMR can be used to probe virtually any type of food sample, from liquids, such as beverages, oils, and broth, to semisolids, such as cheese, mayonnaise, and bread, to solids, such as flour, powdered drink mixes, and potato chips. [Pg.50]


See other pages where Chemical analysis experience is mentioned: [Pg.337]    [Pg.337]    [Pg.225]    [Pg.554]    [Pg.901]    [Pg.903]    [Pg.143]    [Pg.5]    [Pg.7]    [Pg.621]    [Pg.444]    [Pg.594]    [Pg.159]    [Pg.378]    [Pg.152]    [Pg.200]    [Pg.349]    [Pg.952]    [Pg.264]    [Pg.197]    [Pg.6]    [Pg.454]    [Pg.101]    [Pg.202]    [Pg.99]    [Pg.208]    [Pg.296]    [Pg.375]    [Pg.369]    [Pg.86]    [Pg.373]    [Pg.259]    [Pg.354]    [Pg.7]    [Pg.18]    [Pg.294]   
See also in sourсe #XX -- [ Pg.281 ]




SEARCH



Experiments analysis

© 2024 chempedia.info