Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical analysis Analytical techniques

HFs have been used successfully for preconcentration in chemical analysis. One technique termed hollow-fiber liquid-phase microextraction (HF-LPME) involves filling the pores of an inert HF material (commonly polypropylene) with an organic phase containing a carrier in a similar way to the manufacturing of SLMs. The fiber is then dipped into an aqueous sample solution, and the analyte is transported across the HF to a small volume of receiver phase in the lumen of the HF that is subsequently analyzed [41,42]. [Pg.734]

The development of precise and reproducible methods of sensory analysis is prerequisite to the determination of what causes flavor, or the study of flavor chemistry. Knowing what chemical compounds are responsible for flavor allows the development of analytical techniques using chemistry rather than human subjects to characterize flavor (38,39). Routine analysis in most food production for the quaUty control of flavor is rare (40). Once standards for each flavor quaUty have been synthesized or isolated, they can also be used to train people to do more rigorous descriptive analyses. [Pg.3]

The physical techniques used in IC analysis all employ some type of primary analytical beam to irradiate a substrate and interact with the substrate s physical or chemical properties, producing a secondary effect that is measured and interpreted. The three most commonly used analytical beams are electron, ion, and photon x-ray beams. Each combination of primary irradiation and secondary effect defines a specific analytical technique. The IC substrate properties that are most frequendy analyzed include size, elemental and compositional identification, topology, morphology, lateral and depth resolution of surface features or implantation profiles, and film thickness and conformance. A summary of commonly used analytical techniques for VLSI technology can be found in Table 3. [Pg.355]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]

Biomolecule Separations. Advances in chemical separation techniques such as capillary zone electrophoresis (cze) and sedimentation field flow fractionation (sfff) allow for the isolation of nanogram quantities of amino acids and proteins, as weU as the characterization of large biomolecules (63—68) (see Biopolymers, analytical techniques). The two aforementioned techniques, as weU as chromatography and centrifugation, ate all based upon the differential migration of materials. Trends in the area of separations are toward the manipulation of smaller sample volumes, more rapid purification and analysis of materials, higher resolution of complex mixtures, milder conditions, and higher recovery (69). [Pg.396]

Sodium and chloride may be measured using ion-selective electrodes (see Electro analytical techniques). On-line monitors exist for these ions. Sihca and phosphate may be monitored colorimetricaHy. Iron is usually monitored by analysis of filters that have had a measured amount of water flow through them. Chloride, sulfate, phosphate, and other anions may be monitored by ion chromatography using chemical suppression. On-line ion chromatography is used at many nuclear power plants. [Pg.363]

Since 1970, new analytical techniques, eg, ion chromatography, have been developed, and others, eg, atomic absorption and emission, have been improved (1—5). Detection limits for many chemicals have been dramatically lowered. Many wet chemical methods have been automated and are controlled by microprocessors which allow greater data output in a shorter time. Perhaps the best known continuous-flow analy2er for water analysis is the Autoanaly2er system manufactured by Technicon Instmments Corp. (Tarrytown, N.Y.) (6). Isolation of samples is maintained by pumping air bubbles into the flow line. Recently, flow-injection analysis has also become popular, and a theoretical comparison of it with the segmented flow analy2er has been made (7—9). [Pg.230]

Chromatography is a technique for separating and quantifying the constituents of a mixture. Separation techniques are essential for the characterization of the mixtures that result from most chemical processes. Chromatographic analysis is used in many areas of science and engineering in environmental studies, in the analysis of art objects, in industrial quahty control (qv), in analysis of biological materials, and in forensics (see Biopolymers, analytical TECHNIQUES FiNE ART EXAMINATION AND CONSERVATION FoRENSic CHEMISTRY). Most chemical laboratories employ one or more chromatographs for routine analysis (1). [Pg.104]

One of the new trends in chemical analysis appeared in the last decade is that the miniaturization. It becomes apparent in the miniaturization of analytical devices, separation procedures, measuring tools, analyzing samples and as a consequent the term micro have appeared. Further development of this trend have led to transfer from the term micro to nano one (nanoparticles, nanofluides, nanoprobes, nanoelectrodes, nanotubes, nanoscale, nanobarcode, nanoelectrospray, nanoreactors, etc). Thereupon a nanoscale films produced by Langmuir-Blodgett (LB) technique are proposed for modifying of chemical sensors. [Pg.308]

Static SIMS is labeled a trace analytical technique because of the very small volume of material (top monolayer) on which the analysis is performed. Static SIMS can also be used to perform chemical mapping by measuring characteristic molecules and fiagment ions in imaging mode. Unlike dynamic SIMS, static SIMS is not used to depth profile or to measure elemental impurities at trace levels. [Pg.528]

X-ray photoelectron spectroscopy (XPS) is currently the most widely used surface-analytical technique, and is therefore described here in more detail than any of the other techniques. At its inception hy Sieghahn and coworkers [2.1] it was called ESCA (electron spectroscopy for chemical analysis), hut the name ESCA is now considered too general, because many surface-electron spectroscopies exist, and the name given to each one must be precise. The name ESCA is, nevertheless, still used in many places, particularly in industrial laboratories and their publications. Briefly, the reasons for the popularity of XPS are the exceptional combination of compositional and chemical information that it provides, its ease of operation, and the ready availability of commercial equipment. [Pg.6]

Until the last War, variants of optical emission spectroscopy ( spectrometry when the technique became quantitative) were the principal supplement to wet chemical analysis. In fact, university metallurgy departments routinely employed resident analytical chemists who were primarily experts in wet methods, qualitative and quantitative, and undergraduates received an elementary grounding in these techniques. This has completely vanished now. [Pg.234]

Sibilia (1988), in his guide to materials characterisation and chemical analysis, offers a concise discussion of the sensitivity of different analytical techniques for... [Pg.235]

Samples of particulate matter can be subjected to many of the above analytical techniques in chemical characterization. The following methods are, however, particularly applicable to analysis of physical characteristics of particulate matter isolated from air sampling. [Pg.312]

A number of analytical techniques such as FTIR spectroscopy,65-66 13C NMR,67,68 solid-state 13 C NMR,69 GPC or size exclusion chromatography (SEC),67-72 HPLC,73 mass spectrometric analysis,74 differential scanning calorimetry (DSC),67 75 76 and dynamic mechanical analysis (DMA)77 78 have been utilized to characterize resole syntheses and crosslinking reactions. Packed-column supercritical fluid chromatography with a negative-ion atmospheric pressure chemical ionization mass spectrometric detector has also been used to separate and characterize resoles resins.79 This section provides some examples of how these techniques are used in practical applications. [Pg.407]

As AOS is a mixture of different chemical species, determination of its composition by modern analytical techniques is perhaps even more important than for most other surfactants this chapter therefore also describes the state of the art of the analysis of AOS. The chapter also contains a brief review of the biodegradability and the toxicity of AOS. [Pg.365]

It is particularly important to study process phenomena under dynamic (rather than static) conditions. Most current analytical techniques are designed to determine the initial and final states of a material or process. Instmments must be designed for the analysis of materials processing in real time, so that the cmcial chemical reactions in materials synthesis and processing can be monitored as they occur. Recent advances in nuclear magnetic resonance and laser probes indicate valuable lines of development for new techniques and comparable instmmentation for the study of interfaces, complex hquids, microstmctures, and hierarchical assemblies of materials. Instmmentation needs for the study of microstmctured materials are discussed in Chapter 9. [Pg.88]


See other pages where Chemical analysis Analytical techniques is mentioned: [Pg.364]    [Pg.91]    [Pg.458]    [Pg.219]    [Pg.316]    [Pg.205]    [Pg.163]    [Pg.416]    [Pg.422]    [Pg.298]    [Pg.83]    [Pg.419]    [Pg.394]    [Pg.106]    [Pg.198]    [Pg.195]    [Pg.398]    [Pg.174]    [Pg.410]    [Pg.451]    [Pg.180]    [Pg.185]    [Pg.186]    [Pg.192]    [Pg.671]    [Pg.16]    [Pg.147]    [Pg.415]    [Pg.353]    [Pg.94]    [Pg.303]    [Pg.407]    [Pg.901]   


SEARCH



Analysis Analytical technique

Analysis techniques

Analytical Analyses

Analytical techniques

Chemical techniques

© 2024 chempedia.info