Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemical analyses concentration methods used

Concentration Methods Used To Prepare for Chemical Analysis... [Pg.14]

Concentration methods used as preparation for chemical analysis may be divided into two major groups (2) ... [Pg.14]

Various types of possible interactions between reactions are discussed. Some of them are united by the general idea of chemical reaction interference. The ideas on conjugated reactions are broadened and the determinant formula is deduced the coherence condition for chemical interference is formulated and associated phase shifts are determined. It is shown how interaction between reactions may be qualitatively and quantitatively assessed and kinetic analysis of complex reactions with under-researched mechanisms may be performed with simultaneous consideration of the stationary concentration method. Using particular examples, interference of hydrogen peroxide dissociation and oxidation of substrates is considered. [Pg.19]

In species where pheromones are not typical hormones, intensive chemical analyses have been productive in search of pheromone compounds. Such analyses usually involve exhaustive chromatographic and spectromefric methods including high performance liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR) to concentrate, purify and identify compounds in water conditioned by mature animals, and to confirm the pheromone functions through EOG and/or behavioral tests. Chemical analysis has been used successfully... [Pg.472]

All electrochemical methods are based on the interaction of electrical energy and matter. The measurements are done in an electrochemical cell where the sample and at least two electrodes are placed. The electrochemical cell possesses a large variety of concentration-dependent physical characteristics that may be exploited for chemical analysis. The methods are mainly used in analysis of aqueous samples but are also applicable to nonaqueous solutions and gases. In most of the methods one concentration-dependent electrical parameter, like voltage, current, resistance, or charge, is measured while the others are kept constant or manipulated to receive the desired response that correlates to the sample composition. [Pg.3869]

Thus, an analysis method with a much better estimation accuracy is necessary. For a more detailed analysis, a method using the diffusion equation or the geochemical mass transfer analysis must be used. The biggest difference in these two methods is the chemical reaction model. The method is frequently used for predicting neutralization or salt attack of concrete structures in the civil engineering fields. Regarding mass transfer, the law of conservation of mass relating to the solid-phase element concentration Cp and... [Pg.173]

An important application of this type of analysis is in the determination of the calculated cetane index. The procedure is as follows the cetane number is measured using the standard CFR engine method for a large number of gas oil samples covering a wide range of chemical compositions. It was shown that this measured number is a linear combination of chemical family concentrations as determined by the D 2425 method. An example of the correlation obtained is given in Figure 3.3. [Pg.52]

Plot of equation 13.18 showing limits for which a chemical kinetic method of analysis can be used to determine the concentration of a catalyst or a substrate. [Pg.637]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]

Chemical analysis methods maybe used for assay of silver alloys containing no interfering base metals. Nitric acid dissolution of the silver and precipitation as AgCl, or the Gay-Lussac-VoUiard titration methods are used iaterchangeably for the higher concentrations of silver. These procedures have been described (4). [Pg.85]

Standards used to constmct a cahbration curve must be prepared such that the matrix of the standard is identical to the sample s matrix because the values of the parameters k and b associated with a linear cahbration curve are matrix dependent. Many areas of chemical analysis are plagued by matrix effects, and it is often difficult to duphcate the sample matrix when preparing external standards. Because it is desirable to eliminate matrix effects, cahbration in the sample matrix itself can be performed. This approach is called the standard addition method (SAM) (14). In this method, the standards are added to the sample matrix and the response of the analyte plus the standard is monitored as a function of the added amount of the standard. The initial response is assumed to be Rq, and the relationship between the response and the concentration of the analyte is... [Pg.427]

In practice of chemical analysis of organic substances, for some classes of compounds measuring of summary concentration in re-count to one of representatives is used. In the case of need of information about the content of each component, the chromatographic methods are applicable. [Pg.126]

In general, most of the methods used to analyze the chemical nature of the ionic liquid itself, as described in Chapter 4, should also be applicable, in some more sophisticated form, to study the nature of a catalyst dissolved in the ionic liquid. For attempts to apply spectroscopic methods to the analysis of active catalysts in ionic liquids, however, it is important to consider three aspects a) as with catalysis in conventional media, the lifetime of the catalytically active species will be very short, making it difficult to observe, b) in a realistic catalytic scenario the concentration of the catalyst in the ionic liquid will be very low, and c) the presence and concentration of the substrate will influence the catalyst/ionic liquid interaction. These three concerns alone clearly show that an ionic liquid/substrate/catalyst system is quite complex and may be not easy to study by spectroscopic methods. [Pg.226]

Much of the early work with certified reference materials was linked to the derivation of reference methods and there was a period in which primary or definitive (i.e. very accurate but usually very complex) and secondary (or usable) methods were reported e.g. steroid hormones (Siekmann 1979), creatinine (Siekmann 1985), urea (Welch et al. 1984) and nickel (Brown et al. 1981). Although there are some application areas, such as checking the concentrations of preparations listed in a pharmacopoeia, where a prescribed, defined method has to be used, in practice such work is limited. However, this approach to chemical analysis is no longer widely used and will not be further discussed. The emphasis now is placed on using RMs to demonstrate that a method in use meets analytical criteria or targets deemed to be appropriate for the application and to develop figures of merit (Delves 1984). [Pg.112]

The method using GC/MS with selected ion monitoring (SIM) in the electron ionization (El) mode can determine concentrations of alachlor, acetochlor, and metolachlor and other major corn herbicides in raw and finished surface water and groundwater samples. This GC/MS method eliminates interferences and provides similar sensitivity and superior specificity compared with conventional methods such as GC/ECD or GC/NPD, eliminating the need for a confirmatory method by collection of data on numerous ions simultaneously. If there are interferences with the quantitation ion, a confirmation ion is substituted for quantitation purposes. Deuterated analogs of each analyte may be used as internal standards, which compensate for matrix effects and allow for the correction of losses that occur during the analytical procedure. A known amount of the deuterium-labeled compound, which is an ideal internal standard because its chemical and physical properties are essentially identical with those of the unlabeled compound, is carried through the analytical procedure. SPE is required to concentrate the water samples before analysis to determine concentrations reliably at or below 0.05 qg (ppb) and to recover/extract the various analytes from the water samples into a suitable solvent for GC analysis. [Pg.349]

Perhaps the most obvious method of studying kinetic systems is to periodically withdraw samples from the system and to subject them to chemical analysis. When the sample is withdrawn, however, one is immediately faced with a problem. The reaction will proceed just as well in the test sample as it will in the original reaction medium. Since the analysis will require a certain amount of time, regardless of the technique used, it is evident that if one is to obtain a true measurement of the system composition at the time the sample was taken, the reaction must somehow be quenched or inhibited at the moment the sample is taken. The quenching process may involve sudden cooling to stop the reaction, or it may consist of elimination of one of the reactants. In the latter case, the concentration of a reactant may be reduced rapidly by precipitation or by fast quantitative reaction with another material that is added to the sample mixture. This material may then be back-titrated. For example, reactions between iodine and various reducing agents can be quenched by addition of a suitably buffered arsenite solution. [Pg.38]

Another method to detect energy transfer directly is to measure the concentration or amount of acceptor that has undergone an excited state reaction by means other than detecting its fluorescence. For instance, by chemical analysis or chromatographic analysis of the product of a reaction involving excited A [117, 118]. An early application of this determined the photolyzed A molecules by absorption spectroscopic analysis. [119-121], This can be a powerful method, because it does not depend on expensive instrumentation however, it lacks real-time observation, and requires subsequent manipulation. For this reason, fluorescence is the usual method of detection of the sensitized excitation of the acceptor. If it is possible to excite the donor without exciting the acceptor, then the rate of photolysis of the acceptor (which is an excited state reaction) can be used to calculate the FRET efficiency [122],... [Pg.58]

Flow injection analysis is a rapid method of automated chemical analysis that allows for quasi-continuous recording of nutrient concentrations in a flowing stream of seawater. The apparatus used for flow injection analysis is generally less expensive and more rugged than that used in segmented continuous flow analysis. A modified flow injection analysis procedure, called reverse flow injection analysis, was adopted by Thompson et al. [213] and has been adapted for the analysis of dissolved silicate in seawater. The reagent is injected into the sample stream in reverse flow injection analysis, rather than vice versa as in flow injection analysis. This results in an increase in sensitivity. [Pg.103]

As Hem (1985) notes, a chemical analysis with concentrations reported to two or three, and sometimes four or five, significant figures can be misleadingly authoritative. Analytical accuracy and precision are generally in the range of 2 to 10%, but depend on the technique used, the skill of the analyst, and on whether or not the constituent was present near the detection limit of the analytical method. The third digit in a reported concentration is seldom meaningful, and confidence should not necessarily be placed on the second. [Pg.23]

The uses of micelles in chemical analysis are rapidly increasing (Hinze, 1979). Analytical reactions are carried out typically on a small scale and are based on spectrophotometry. At the same time, undesired side reactions can cause major problems, especially when the analytical procedure depends on reactions which are relatively slow and require high temperatures, exotic solvents or high reagent concentrations for completion. Micelles can suppress undesired reactions as well as speed desired ones and they also solubilize reagents which are sparingly soluble in water. In addition it is often possible to make phosphorescence measurements at room temperature in the presence of surfactants which enormously increases the utility of this very sensitive method of detection. [Pg.281]


See other pages where Chemical analyses concentration methods used is mentioned: [Pg.60]    [Pg.99]    [Pg.305]    [Pg.2]    [Pg.47]    [Pg.639]    [Pg.2]    [Pg.401]    [Pg.174]    [Pg.613]    [Pg.32]    [Pg.721]    [Pg.255]    [Pg.444]    [Pg.112]    [Pg.267]    [Pg.884]    [Pg.500]    [Pg.133]    [Pg.609]    [Pg.638]    [Pg.327]    [Pg.38]    [Pg.223]    [Pg.445]    [Pg.106]    [Pg.407]    [Pg.247]    [Pg.52]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Chemical analyses concentrates

Chemical concentration

Concentration methods

© 2024 chempedia.info