Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Characteristics and Uses of Phenols

Constitution of the Esters of the (3-Ketocarboxylic Acids and of the P-Diketones.—Ethyl acetoacetate is taken as example. It reacts like a ketone with phenylhydrazine, bisulphite, and other ketone reagents on the other hand it shows an acid reaction, it dissolves in alkalis, and gives the colour reaction with ferric chloride characteristic of ends and also of phenols. From this double behaviour it was formerly concluded that it was either purely ketonic or purely enolic and that the reactions in the other form were to be attributed to a rearrangement caused by the reagents used. The true state of affairs was first disclosed by... [Pg.260]

Phenol is both a man-made chemical and produced naturally. It is found in nature in some foods and in human and animal wastes and decomposing organic material. The largest single use of phenol is as an intermediate in the production of phenolic resins. However, it is also used in the production of caprolactam (which is used in the manufacture of nylon 6 and other synthetic fibers) and bisphenol A (which is used in the manufacture of epoxy and other resins). Phenol is also used as a slimicide (a chemical toxic to bacteria and fungi characteristic of aqueous slimes), as a disinfectant, and in medicinal preparations such as over-the-counter treatments for sore throats. Phenol ranks in the top 50 in production volumes for chemicals produced in the United States. Chapters 3 and 4 contain more information. [Pg.22]

Other major uses of phenol include the production of caprolactam (15%), aniline (5%), alkylphenols (5%), xylenols (5%), and miscellaneous uses (1%) (CMR 1996). Phenol is used as a slimicide (a chemical toxic to bacteria and fungi characteristic of aqueous slimes) and as a general disinfectant in solution or mixed with... [Pg.159]

A wide variety of catalysts have been used to increase the rate of the desired reaction pathway, among which are Lewis acids, protic acids, phenols and pyridine M-oxides. Due to the different characteristics and products of the different catalysts, the examples will be grouped according to the catalyst used. [Pg.155]

Both melamine—formaldehyde (MF) and resorcinol—formaldehyde (RF) foUowed the eadier developments of phenol—, and urea—formaldehyde. Melamine has a more complex stmcture than urea and is also more expensive. Melamine-base resins requite heat to cure, produce colorless gluelines, and are much more water-resistant than urea resins but stiU are not quite waterproof. Because of melamine s similarity to urea, it is often used in fairly small amounts with urea to produce melamine—urea—formaldehyde (MUF) resins. Thus, the improved characteristics of melamine can be combined with the economy of urea to provide an improved adhesive at a moderate increase in cost. The improvement is roughly proportional to the amount of melamine used the range of addition may be from 5 to 35%, with 5—10% most common. [Pg.378]

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terrninators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. Eor the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimise formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ fZ-butylphenol [98-54-4] for manufacture of phenoHc resins. The tert-huty group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

The comparison of analytical characteristics HPLC methods of determination of phenols with application amperometric and photometric detectors was caiiy out in this work. Experiment was executed with use liquid chromatograph Zvet-Yauza and 100 mm-3mm 150mm-3mm column with Silasorb C18 (5 10 p.m). With amperometric detector phenols were detected in oxidizing regime on glass-cai bon electrodes. With photometric detector phenols were detected at 254 nm. [Pg.129]

While phenol is the most common monomer for novolac manufacture, it is far more common to see incorporation of other phenolic materials with novolacs than with resoles. Cresols, xylenols, resorcinol, catechols, bisphenols, and a variety of phenols with longer alkyl side chains are often used. While most resoles are made with a single phenolic monomer, two or more phenolic materials are often seen in novolac formulae. These additional monomers may be needed to impart special flow characteristics under heat, change a glass transition temperature, modify cure speed, or to adjust solubility in the application process among others. [Pg.920]

Mono- and polyl dric phenols and enols frequently form characteristically colored complexes with Fe + ions [4, 28, 29]. Here monohydric phenols usually produce reddish-violet colors, while pyrocatechol derivatives yield green chelates [4]. Detection of acetone using Legal s test is based on the formation of an iron complex [4]. The same applies to the thioglycolic acid reaction of the German Pharmacopoeia (DAB 9) [4, 30]. [Pg.67]

The use of plants from extreme environments Wild plants from extreme environments may possess genes and gene combinations which confer stress tolerance. We must realise, however, that many of their characteristics, e.g. leaf pubescence and succulence in drought-resistant plants, are incompatible with the high yield potential required for crop plants. In addition, most of these species contain compounds such as phenolics and mucilages which interfere with conventional molecular biology techniques. [Pg.150]

Some phenolic acids such as ellagic acid can be used as floral markers of heather honey (Cherchi et al., 1994 Ferreres et al., 1996a,b), and the hydroxyciimamates (caffeic, p-coumaric, and ferulic acids) as floral markers of chestnut honey (Cherchi et al., 1994). Pinocembrin, pinobanksin, and chrysin are the characteristic flavonoids of propolis, and these flavo-noid compounds have been found in most European honey samples (Tomas-Barberan et al., 2001). However, for lavender and acacia honeys, no specific phenolic compoimds could be used as suitable floral markers (Tomas-Barberan et al., 2001). Other potential phytochemical markers like abscisic acid may become floral markers in heather honey (Cherchi et al., 1994). Abscisic acid was also detected in rapeseed, lime, and acacia honey samples (Tomas-Barberan et al., 2001). Snow and Manley-Harris (2004) studied antimicrobial activity of phenolics. [Pg.116]


See other pages where Characteristics and Uses of Phenols is mentioned: [Pg.117]    [Pg.127]    [Pg.131]    [Pg.494]    [Pg.117]    [Pg.127]    [Pg.131]    [Pg.494]    [Pg.399]    [Pg.776]    [Pg.264]    [Pg.122]    [Pg.139]    [Pg.20]    [Pg.141]    [Pg.230]    [Pg.186]    [Pg.12]    [Pg.265]    [Pg.356]    [Pg.297]    [Pg.442]    [Pg.99]    [Pg.442]    [Pg.280]    [Pg.255]    [Pg.7]    [Pg.28]    [Pg.115]    [Pg.258]    [Pg.338]    [Pg.326]    [Pg.66]    [Pg.499]    [Pg.371]    [Pg.762]    [Pg.3]    [Pg.2]    [Pg.95]    [Pg.258]    [Pg.307]   


SEARCH



Phenols characteristics

© 2024 chempedia.info