Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CHAPS

Hicks, C. P. Bibliography of Thermodynaunic Quantities for Binary Fluid Mixtures, "Chemical Thermodynamics", Vol. 2, Chap. 9, edited by M. L. McGlashan, Chemical Society, London, 1978. [Pg.8]

Since process design starts with the reactor, the first decisions are those which lead to the choice of reactor. These decisions are among the most important in the whole design. Good reactor performance is of paramount importance in determining the economic viability of the overall design and fundamentally important to the environmental impact of the process. In addition to the desired products, reactors produce unwanted byproducts. These unwanted byproducts create environmental problems. As we shall discuss later in Chap. 10, the best solution to environmental problems is not elaborate treatment methods but not to produce waste in the first place. [Pg.15]

If the total heat consumed is from an external utility (e.g., mains steam), then a high efficiency is desirable, even perhaps at the expense of a high capital cost. However, if the heat consumed is by recovery from elsewhere in the process, as is discussed in Chap. 15, then comparison on the basis of dryer efficiency becomes less meaningful. [Pg.91]

Reactor conversion. In Chap. 2 an initial choice was made of reactor type, operating conditions, and conversion. Only in extreme cases would the reactor be operated close to complete conversion. The initial setting for the conversion varies according to whether there are single reactions or multiple reactions producing byproducts and whether reactions are reversible. [Pg.95]

Achieving complete conversion of FEED to PRODUCT in the reactor usually requires an extremely long residence time, which is normally uneconomic (at least in continuous processes). Thus, if there is no byproduct formation, the initial reactor conversion is set to be around 95 percent, as discussed in Chap. 2. The reactor effluent thus contains unreacted FEED and PRODUCT (Fig. 4.1a). [Pg.95]

Clearly, the time chart shown in Fig. 4.14 indicates that individual items of equipment have a poor utilization i.e., they are in use for only a small fraction of the batch cycle time. To improve the equipment utilization, overlap batches as shown in the time-event chart in Fig. 4.15. Here, more than one batch, at difierent processing stages, resides in the process at any given time. Clearly, it is not possible to recycle directly from the separators to the reactor, since the reactor is fed at a time different from that at which the separation is carried out. A storage tank is needed to hold the recycle material. This material is then used to provide part of the feed for the next batch. The final flowsheet for batch operation is shown in Fig. 4.16. Equipment utilization might be improved further by various methods which are considered in Chap. 8 when economic tradeoffs are discussed. [Pg.121]

The use of excess reactants, diluents, or heat carriers in the reactor design has a significant effect on the flowsheet recycle structure. Sometimes the recycling of unwanted byproduct to the reactor can inhibit its formation at the source. If this can be achieved, it improves the overall use of raw materials and eliminates effluent disposal problems. Of course, the recycling does in itself reuse some of the other costs. The general tradeoffs are discussed in Chap. 8. [Pg.126]

Whether heat integration is restricted to the separation system or allowed with the rest of the process, integration always benefits from colder reboiler streams and hotter condenser streams. This point is dealt with in more general terms in Chap. 12. In addition, when column pressures are allowed to vary, columns with smaller temperature differences are easier to integrate, since smaller changes in pressure are required to achieve suitable integration. This second point is explained in more detail in Chap. 14. [Pg.146]

When the integration of sequences of simple columns was considered, it was observed that sequences with higher heat loads occurred simultaneously with more extreme levels. Heat integration always benefits from low heat loads and less extreme levels, as we shall see later in Chap. 12. Now consider the effect of thermal coupling arrangements on loads and levels. Figure 5.18 compares a... [Pg.154]

Details of how this design was developed in Fig. 6.9 are included in Chap. 16. For now, simply take note that the targets set by the composite curves are achievable in design, providing that the pinch is recognized, there is no transfer of heat ac ss it, and no inappropriate use of utilities occurs. However, insight into the pinch is needed to analyze some of the important decisions still to be made before network design is addressed. [Pg.169]

The data from Table 7.4 are presented graphically in Fig. 7.11. The optimal is at 10°C, confirming the initial value used for this problem in Chap. 6. [Pg.235]

Consider again the simple process shown in Fig. 4.4d in which FEED is reacted to PRODUCT. If the process usbs a distillation column as separator, there is a tradeofi" between refiux ratio and the number of plates if the feed and products to the distillation column are fixed, as discussed in Chap. 3 (Fig. 3.7). This, of course, assumes that the reboiler and/or condenser are not heat integrated. If the reboiler and/or condenser are heat integrated, the, tradeoff is quite different from that shown in Fig. 3.7, but we shall return to this point later in Chap. 14. The important thing to note for now is that if the reboiler and condenser are using external utilities, then the tradeoff between reflux ratio and the number of plates does not affect other operations in the flowsheet. It is a local tradeoff. [Pg.239]

In Fig. 8.3, the only cost forcing the optimal conversion hack from high values is that of the reactor. Hence, for such simple reaction systems, a high optimal conversion would he expected. This was the reason in Chap. 2 that an initial value of reactor conversion of 0.95 was chosen for simple reaction systems. [Pg.243]

Also, if there are two separators, the order of separation can change. The tradeoffs for these two alternative flowsheets will be different. The choice between different separation sequences can be made using the methods described in Chap. 5. However, we should be on guard to the fact that as the reactor conversion changes, the most appropriate sequence also can change. In other words, different separation system structures become appropriate for different reactor conversions. [Pg.246]

Distillation. There is a large inventory of boiling liquid, sometimes under pressure, in a distillation column, both in the base and held up in the column. If a sequence of columns is involved, then, as discussed in Chap. 5, the sequence can be chosen to minimize the inventory of hazardous material. If all materials are equally hazardous, then choosing the sequence that tends to minimize the flow rate of nonkey components also will tend to minimize the inventory. Use of the dividing-wall column shown in Fig. 5.17c will reduce considerably the inventory relative to two simple columns. Dividing-wall columns are inherently safer than conventional arrangements because they lower not only the inventory but also the number of items of equipment and hence lower the potential for leaks. [Pg.263]

In Chap. 2 the objective set was to maximize selectivity for a given conversion. This also will minimize waste generation in reactors for a given conversion. [Pg.276]

Product removal during reaction. Separation of the product before completion of the reaction can force a higher conversion, as discussed in Chap. 2. Figure 2.4 showed how this is done in sulfuric acid processes. Sometimes the product (or one of the products) can be removed continuously from the reactor as the reaction progresses, e.g., by allowing it to vaporize from a liquid phase reactor. [Pg.277]

Reducing waste from multiple reactions producing waste byproducts. In addition to the losses described above for single reactions, multiple reaction systems lead to further waste through the formation of waste byproducts in secondary reactions. Let us briefly review from Chap. 2 what can be done to minimize byproduct formation. [Pg.278]

Additional reaction and separation of waste streams. Sometimes it is possible to cany out further reaction as well as separation on waste streams. Some examples have already been discussed in Chap. 4. [Pg.288]

Reduce losses from fugitive emissions and tank breathing as discussed under safety in Chap. 9. [Pg.290]

Gravity settlers. Gravity settlers were discussed in Chap. 3 and... [Pg.301]

Cyclones. Cyclones are also primarily used as prefilters. These also were discussed in Chap. 3 and illustrated in Fig. 3.4. The particle-laden gas enters tangentially and spins downward and inward, ultimately leaving the top of the unit. Particles are thrown radially outward to the wall by the centrifugal force and leave at the bottom. [Pg.302]

Bag filters. Bag filters, as discussed in Chap. 3 and illustrated in Fig. 3.66, are probably the most common method of separating particulate materials from gases. A cloth or felt filter material is used that is impervious to the particles. Bag filters are suitable for use in very high dust load conditions. They have an extremely high efficiency, but they suflFer from the disadvantage that the pressure drop across them may be high. ... [Pg.303]

Increased energy efficiency. Increasing energy efficiency and the introduction of cogeneration reduce CO2 emissions. Remember that emissions should be viewed on a global basis, as discussed in Chap. 10. [Pg.306]

In Chap. 10, modification of the process for reducing process waste was considered in detail. It also was concluded that to minimize utility waste, the single most effective measure would be improved heat recovery. The energy-targeting methods presented in Chaps. 6 and 7 maximize heat recovery for a given set of process conditions. However, the process conditions can be changed to improve the heat recovery further. [Pg.321]

Having to readjust the capital/energy tradeoff after every process change would be a real problem if it were not for the existence of the total cost targeting procedures discussed in Chap. 7. [Pg.323]

Heat carriers. If adiabatic operation produces an unacceptable rise or fall in temperature, then the option discussed in Chap. 2 is to introduce a heat carrier. The operation is still adiabatic, but an inert material is introduced with the reactor feed as a heat carrier. The heat integration characteristics are as before. The reactor feed is a cold stream and the reactor efiluent a hot stream. The heat carrier serves to increase the heat capacity fiow rate of both streams. [Pg.325]

Indirect heat transfer with the reactor. Although indirect heat transfer with the reactor tends to bring about the most complex reactor design options, it is often preferable to the use of a heat carrier. A heat carrier creates complications elsewhere in the flowsheet. A number of options for indirect heat transfer were discussed earlier in Chap. 2. [Pg.326]

Quench. As discussed in Chap. 2, the reactor effluent may need to be cooled rapidly (quenched). This can be by indirect heat transfer using conventional heat transfer equipment or by direct heat transfer by mixing with another fluid. [Pg.329]

In Chap. 12 it was discussed how the pinch takes on fundamental significance in improving heat integration. Let us now explore the consequences of placing reactors in different locations relative to the pinch. [Pg.329]

The preceding appropriate placement arguments assume that the process has the capacity to accept or give up the reactor heat duties at the given reactor temperature. A quantitative tool is needed to assess the capacity of the background process. For this purpose, the grand composite curve can be used and the reactor profile treated as if it was a utility, as explained in Chap. 6. [Pg.332]

Establish simple sequences. Using methods described in Chap. 5, sequences of simple columns with low overall vapor load are established. Consideration should not be restricted to the single sequence with the lowest overall vapor load, since many factors need to be considered in finally arriving at the best design. [Pg.348]

The logic behind these three evolutions is explained in Chap. 5. [Pg.349]

As pointed out in Chap. 5, replacing simple columns by complex columns tends to reduce the vapor (and heat) load but requires more of the heat to be added or removed at extreme levels. This means that the introduction of complex columns in the design might prejudice heat integration opportunities. Thus the introduction of complex distillation arrangements needs to be considered simultaneously with the heat integration. This can be carried out manually with some trial and error or using an automated procedure such as that of Kakhu and Flower. ... [Pg.349]


See other pages where CHAPS is mentioned: [Pg.76]    [Pg.83]    [Pg.87]    [Pg.129]    [Pg.155]    [Pg.190]    [Pg.216]    [Pg.242]    [Pg.245]    [Pg.277]    [Pg.278]    [Pg.279]    [Pg.321]    [Pg.323]    [Pg.335]    [Pg.338]    [Pg.348]   
See also in sourсe #XX -- [ Pg.42 , Pg.226 ]

See also in sourсe #XX -- [ Pg.340 , Pg.343 ]

See also in sourсe #XX -- [ Pg.447 , Pg.448 ]

See also in sourсe #XX -- [ Pg.4 , Pg.264 ]

See also in sourсe #XX -- [ Pg.55 ]

See also in sourсe #XX -- [ Pg.651 ]

See also in sourсe #XX -- [ Pg.232 ]

See also in sourсe #XX -- [ Pg.6 ]

See also in sourсe #XX -- [ Pg.88 ]

See also in sourсe #XX -- [ Pg.844 ]

See also in sourсe #XX -- [ Pg.844 ]

See also in sourсe #XX -- [ Pg.128 ]




SEARCH



Bilayer CHAPS

CHAP process

CHAPS dimethylammonio]-1 -propane

Chap sticks

Chapped nipples

Chapping, remedies

Chronic Hazard Advisory Panel CHAP)

Community Health CHAP)

Detergents CHAPS

Ethanol CHAP process

Ionic detergents CHAPS

Kinetic theory (also Chap

Proton exchange, Chap

References (for Preface, Chaps. I and II)

Solubilization agents CHAPS

© 2024 chempedia.info