Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Distillation complexes

Introduce complex distillation configurations. Introduce prefractionation arrangements (with or without thermal coupling), side-rectifiers, and side-strippers to the extent that operability can be... [Pg.348]

As pointed out in Chap. 5, replacing simple columns by complex columns tends to reduce the vapor (and heat) load but requires more of the heat to be added or removed at extreme levels. This means that the introduction of complex columns in the design might prejudice heat integration opportunities. Thus the introduction of complex distillation arrangements needs to be considered simultaneously with the heat integration. This can be carried out manually with some trial and error or using an automated procedure such as that of Kakhu and Flower. ... [Pg.349]

If complex distillation columns are being considered, then these also can bring about significant reductions in capital cost. The dividing-wall column shown in Fig. 5.17 not only requires typically 20 to 30 percent less energy than a conventional arrangement but also can be typically 30 percent lower in capital cost than a conventional two-column arrangement. ... [Pg.350]

Computer solutions entail setting up component equiUbrium and component mass and enthalpy balances around each theoretical stage and specifying the required design variables as well as solving the large number of simultaneous equations required. The expHcit solution to these equations remains too complex for present methods. Studies to solve the mathematical problem by algorithm or iterational methods have been successflil and, with a few exceptions, the most complex distillation problems can be solved. [Pg.166]

The simple and complex distillation operations just described all have two things in common (1) both rectifying and stripping sections are providea so that a separation can be achieved between two components that are adjacent in volatility and (2) the separation is effected only by the addition and removal of energy and not by the addition of any mass separating agent (MSA) such as in liquid-liquid extraction. [Pg.1243]

FIG. 13-2 Complex distillation operations with single columns, a) Use of intermediate heat exchangers, (h) Coupling of intermediate heat exchangers with heat pump, (c) Heat pump with external refrigerant, (d) Heat pump with vapor compression, (e) Heat pump with hottoms flashing. [Pg.1244]

The initial version of the inside-out method was developed for rapid calculations of simple and complex distillation, absorption, and... [Pg.1288]

The principle of the perfectly-mixed stirred tank has been discussed previously in Sec. 1.2.2, and this provides essential building block for modelling applications. In this section, the concept is applied to tank type reactor systems and stagewise mass transfer applications, such that the resulting model equations often appear in the form of linked sets of first-order difference differential equations. Solution by digital simulation works well for small problems, in which the number of equations are relatively small and where the problem is not compounded by stiffness or by the need for iterative procedures. For these reasons, the dynamic modelling of the continuous distillation columns in this section is intended only as a demonstration of method, rather than as a realistic attempt at solution. For the solution of complex distillation problems, the reader is referred to commercial dynamic simulation packages. [Pg.129]

The method starts with an assumption of the column temperature and flow profiles. The stage equations are then solved to determine the stage component compositions and the results used to revise the temperature profiles for subsequent trial calculations. Efficient convergence procedures have been developed for the Thiele-Geddes method. The so-called theta method , described by Lyster et al. (1959) and Holland (1963), is recommended. The Thiele-Geddes method can be used for the solution of complex distillation problems,... [Pg.544]

The retrofit of more complex distillation sequences can also be considered. Within a larger, more complex sequence, any pair of columns that are together in a sequence can be considered as candidates for the same retrofit modifications as those discussed for two-column retrofit. [Pg.225]

Table 11.10 Heuristics for separating a mixture of components A, B and C using complex distillation columns. Component A is the most volatile and Component C is the least volatile7. Table 11.10 Heuristics for separating a mixture of components A, B and C using complex distillation columns. Component A is the most volatile and Component C is the least volatile7.
Table 11.10 presents some heuristics for using complex distillation columns to separate a ternary mixture into its pure component products. On the basis of these heuristics and those for simple columns, suggest two sequences containing complex columns that can be used to separate the mixture described in Table 11.9 into relatively pure products. [Pg.231]

Shah PB and Kokossis AC (2002) New Synthesis Framework for the Optimization of Complex Distillation Systems, AIChE J, 48 527. [Pg.233]

A more complex distillation line map is shown in Figure 12.7b. This involves two binary azeotropes. The closeness of the dots on a distillation line is indicative of the difficulty of separation. As an azeotrope is approached, the... [Pg.238]

Complex detection, in microarray fabrication, 16 388-389 Complex distillation systems, design of,... [Pg.204]

Alatiqi presented (I EC Process Design Dev. 1986, Vol. 25, p. 762) the transfer functions for a 4 X 4 multivariable complex distillation column with sidestream stripper for separating a ternary mixture into three products. There are four controlled variables purities of the three product streams (jCj, x, and Xjij) and a temperature difference AT to rninirnize energy consumptiou There are four manipulated variables reflux R, heat input to the reboiler, heat input to the stripper reboiler Qg, and flow rate of feed to the stripper Lj. The 4x4 matrix of openloop transfer functions relating controlled and manipulated variables is ... [Pg.611]

J. Cerda and A.W. Westerberg. Shortcut methods for complex distillation columns. 1. Minimum reflux. Ind. Eng. Chem. Process Des. Dev., 20 546-557, 1981. [Pg.71]

H. Yeomans and I. Grossmann. Optimal design of complex distillation columns using rigorous tray-by-tray disjunctive programming models. Ind. Eng. Chem. Res., 39(ll) 4326-4335, 2000. [Pg.72]

For process optimization problems, the sparse approach has been further developed in studies by Kumar and Lucia (1987), Lucia and Kumar (1988), and Lucia and Xu (1990). Here they formulated a large-scale approach that incorporates indefinite quasi-Newton updates and can be tailored to specific process optimization problems. In the last study they also develop a sparse quadratic programming approach based on indefinite matrix factorizations due to Bunch and Parlett (1971). Also, a trust region strategy is substituted for the line search step mentioned above. This approach was successfully applied to the optimization of several complex distillation column models with up to 200 variables. [Pg.203]

The reactor system may consist of a number of reactors which can be continuous stirred tank reactors, plug flow reactors, or any representation between the two above extremes, and they may operate isothermally, adiabatically or nonisothermally. The separation system depending on the reactor system effluent may involve only liquid separation, only vapor separation or both liquid and vapor separation schemes. The liquid separation scheme may include flash units, distillation columns or trains of distillation columns, extraction units, or crystallization units. If distillation is employed, then we may have simple sharp columns, nonsharp columns, or even single complex distillation columns and complex column sequences. Also, depending on the reactor effluent characteristics, extractive distillation, azeotropic distillation, or reactive distillation may be employed. The vapor separation scheme may involve absorption columns, adsorption units,... [Pg.226]

Distillation was the first method by which petroleum was refined, but this was not so much a refining method as a method for separation of the crude oil into fractions, such as kerosene, for which there was a demand and hence a ready market. Nevertheless, as petroleum refineries have evolved into present-day complexes, distillation units may still find a place, depending upon the characteristics of the crude oil feedstock, in a refinery sequence. A multitude of separations is accomplished by distillation, but its most important and primary function in the refinery is its use for the separation of crude oil into component fractions (Table 7-2) (Speight, 1999). [Pg.269]

TABLE 1 Promising Designs for the Industrial Complex Distillation Case Study... [Pg.449]

Christiansen AC, Skogestad S, Lien K. Complex distillation arrangements extending their ideas. Comp Chem Eng 1997 21 237. [Pg.454]

Shah PB, Kokossis AC. New synthesis framework for the optimization of complex distillation systems. AIChE J 2002 48 527. [Pg.454]


See other pages where Distillation complexes is mentioned: [Pg.166]    [Pg.1239]    [Pg.1242]    [Pg.1243]    [Pg.1243]    [Pg.1247]    [Pg.384]    [Pg.225]    [Pg.232]    [Pg.152]    [Pg.314]    [Pg.356]    [Pg.356]    [Pg.433]    [Pg.433]    [Pg.433]    [Pg.435]    [Pg.436]    [Pg.448]    [Pg.14]    [Pg.29]    [Pg.255]    [Pg.74]    [Pg.103]   
See also in sourсe #XX -- [ Pg.204 ]




SEARCH



© 2024 chempedia.info