Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellulose anhydrides, preparation

Cellulose esters of aromatic acids, aUphatic acids containing more than four carbon atoms and aUphatic diacids are difficult and expensive to prepare because of the poor reactivity of the corresponding anhydrides with cellulose Httle commercial interest has been shown in these esters. Of notable exception, however, is the recent interest in the mixed esters of cellulose succinates, prepared by the sodium acetate catalyzed reaction of cellulose with succinic anhydride. The additional expense incurred in manufacturing succinate esters is compensated by the improved film properties observed in waterborne coatings (5). [Pg.249]

Production of cellulose esters from aromatic acids has not been commercialized because of unfavorable economics. These esters are usually prepared from highly reactive regenerated cellulose, and their physical properties do not differ markedly from cellulose esters prepared from the more readily available aHphatic acids. Benzoate esters have been prepared from regenerated cellulose with benzoyl chloride in pyridine—nitrobenzene (27) or benzene (28). These benzoate esters are soluble in common organic solvents such as acetone or chloroform. Benzoate esters, as well as the nitrochloro-, and methoxy-substituted benzoates, have been prepared from cellulose with the appropriate aromatic acid and chloroacetic anhydride as the impelling agent and magnesium perchlorate as the catalyst (29). [Pg.251]

In an integrated continuous process, cellulose reacts with acetic anhydride prepared from the carbonylation of methyl acetate with carbon monoxide. The acetic acid Hberated reacts further with methanol to give methyl acetate, which is then carbonylated to give additional acetic anhydride (100,101). [Pg.255]

Cellulose esters of the 2-.. 3-. and 4-carbon acids are readily prepared by the cellulose-anhydride reaction the acetate ester and the mixed acetate butyrate and acetate propionate esters arc manufactured and used in large amounts. Esters of higher acids require different synthesis techniques and tend to be prohibitively expensive except as specialty products. Some arc in commercial production, however. Cellulose acclalc phlhalatc, for example, is manufactured for use as an enteric coating on pills. [Pg.310]

The first organic ester of cellulose was cellulose acetate, prepared by Schutzenberger in 1865 by heating cotton and acetic anhydride to about 180 °C in a sealed tube until the cotton dissolved (J ). In 1879, Franchimont acetylated cotton at lower temperatures with the aid of a sulfuric acid catalyst (2). Miles, in 1903, described the preparation of partially hydrolyzed cellulose acetate, which was easily distinguished from the fully acetylated... [Pg.1053]

Many other esters of cellulose were prepared at various times, including some mixed esters. Various cellulose acetate-butyrates are manufactured today and are perhaps the best known of the mixed esters. They are synthesized in the same manner as cellulose acetate. Mixed anhydrides are used in esterification reactions catalyzed by sulfuric acid. The products are then slightly hydrolyzed. The butyryl groups enhance flexibility and moisture resistance. The materials have the reputation of being tough plastics and are used in such applications as tool handles. Lower molecular weight grades are also used in surface finishes. [Pg.385]

DMSO/TBAF is highly efficient as a reaction medium for the homogeneous esterification of cellulose by transesterification and after the in situ activation (see below) of complex carboxylic acids. The acylation using acid chlorides and anhydrides is limited because the solution contains a certain amount of water caused by the use of the commercially available TBAF trihydrate and the residual moisture in the air-dried polysaccharides. Nevertheless, this system has shown a remarkable capacity for the esterification of lignocellulosic mataials, for example, sisal fibres, which contain about 14 per cent hemicellulose [28]. The DS values of cellulose acetate prepared from these fibres with acetic anhydride in mixtures of DMSO/TBAF were found to decrease with increasing TBAF concentration from 6 to 11 per cent (Table 16.4), due to the increased rate of hydrolysis both of the anhydride and the ester moieties. [Pg.348]

Acetylated cellulose plates, prepared by esterification of cellulose with acetic acid or acetic anhydride, are used for reversed-phase TLC. Plates are available with varying degrees of acetylation ranging from 10 to 40% the polarity of the layer decreases with increasing acetylation. Enantiomeric compounds were resolved by RP-TLC on microcrystalline triacetyl cellulose using 2-propanol-water (6 4) as the mobile phase (Lepri, 1995). [Pg.30]

Cellulose triacetate is obtained by the esterification of cellulose (qv) with acetic anhydride (see Cellulose esters). Commercial triacetate is not quite the precise chemical entity depicted as (1) because acetylation does not quite reach the maximum 3.0 acetyl groups per glucose unit. Secondary cellulose acetate is obtained by hydrolysis of the triacetate to an average degree of substitution (DS) of 2.4 acetyl groups per glucose unit. There is no satisfactory commercial means to acetylate direcdy to the 2.4 acetyl level and obtain a secondary acetate that has the desired solubiUty needed for fiber preparation. [Pg.290]

Cellulose acetate [9004-35-7], prepared by reaction of cellulose with acetic anhydride, acetic acid, and sulfuric acid, is spun into acetate rayon fibers by dissolving it in acetone and spinning the solution into a column of warm air that evaporates the acetone. Cellulose acetate is also shaped into a variety of plastic products, and its solutions are used as coating dopes. Cellulose acetate butyrate [9004-36-8], made from cellulose, acetic anhydride, and butyric anhydride in the presence of sulfuric acid, is a shock-resistant plastic. [Pg.484]

Cellulose esters are commonly derived from natural cellulose by reaction with organic acids, anhydrides, or acid chlorides. Cellulose esters of almost any organic acid can be prepared, but because of practical limitations esters of acids containing more than four carbon atoms have not achieved commercial significance. [Pg.248]

Cellulose acetate [9004-35-7] is the most important organic ester because of its broad appHcation in fibers and plastics it is prepared in multi-ton quantities with degrees of substitution (DS) ranging from that of hydrolyzed, water-soluble monoacetates to those of fully substituted triacetate (Table 1). Soluble cellulose acetate was first prepared in 1865 by heating cotton and acetic anhydride at 180°C (1). Using sulfuric acid as a catalyst permitted preparation at lower temperatures (2), and later, partial hydrolysis of the triacetate gave an acetone-soluble cellulose acetate (3). The solubiUty of partially hydrolyzed (secondary) cellulose acetate in less expensive and less toxic solvents such as acetone aided substantially in its subsequent commercial development. [Pg.248]

Mixed cellulose esters containing the dicarboxylate moiety, eg, cellulose acetate phthalate, have commercially useful properties such as alkaline solubihty and excellent film-forming characteristics. These esters can be prepared by the reaction of hydrolyzed cellulose acetate with a dicarboxyhc anhydride in a pyridine or, preferably, an acetic acid solvent with sodium acetate catalyst. Cellulose acetate phthalate [9004-38-0] for pharmaceutical and photographic uses is produced commercially via the acetic acid—sodium acetate method. [Pg.249]

Cellulose chloroacetates (30) and aminoacetates (30,31), acetate sorbates (32), and acetate maleates (33) have been prepared but are not commercially important. These esters are made from hydrolyzed cellulose acetate with the appropriate anhydride or acid chloride in pyridine. [Pg.251]

Mixed esters containing the dicarboxylate moiety, eg, cellulose acetate phthalate, are usually prepared from the partially hydroly2ed lower aUphatic acid ester of cellulose in acetic acid solvent by using the corresponding dicarboxyhc acid anhydride and a basic catalyst such as sodium acetate (41,42). Cellulose acetate succinate and cellulose acetate butyrate succinate are manufactured by similar methods as described in reference 43. [Pg.252]

Other mixed esters, eg, cellulose acetate valerate [55962-79-3] cellulose propionate valerate [67351-41-17, and cellulose butyrate valerate [53568-56-2] have been prepared by the conventional anhydride sulfuric acid methods (25). Cellulose acetate isobutyrate [67351-38-6] (44) and cellulose propionate isobutyrate [67351-40-0] (45) have been prepared with a 2inc chloride catalyst. Large amounts of catalyst and anhydride are required to provide a soluble product, and special methods of delayed anhydride addition are necessary to produce mixed esters containing the acetate moiety. Mixtures of sulfuric acid and perchloric acid are claimed to be effective catalysts for the preparation of cellulose acetate propionate in dichi oromethane solution at relatively low temperatures (46) however, such acid mixtures are considered too corrosive for large-scale productions. [Pg.252]

Several derivatives of cellulose, including cellulose acetate, can be prepared in solution in dimethylacetamide—lithium chloride (65). Reportedly, this combination does not react with the hydroxy groups, thus leaving them free for esterification or etherification reactions. In another homogeneous-solution method, cellulose is treated with dinitrogen tetroxide in DMF to form the soluble cellulose nitrite ester this is then ester-interchanged with acetic anhydride (66). With pyridine as the catalyst, this method yields cellulose acetate with DS < 2.0. [Pg.253]

Fig. 7. Combined sulfur during preparation of cellulose acetate hydrolysis of sulfate and esters (6). Acetylation schedule A, mixer charged with linters and acetic acid B, minor portion of catalyst added C, began cooling to 18°C D, acetic anhydride added and continued cooling to 16°C E, significant portion... Fig. 7. Combined sulfur during preparation of cellulose acetate hydrolysis of sulfate and esters (6). Acetylation schedule A, mixer charged with linters and acetic acid B, minor portion of catalyst added C, began cooling to 18°C D, acetic anhydride added and continued cooling to 16°C E, significant portion...
The earliest preparation of cellulose acetate is credited to Schiitzenberger in 1865. The method used was to heat the cotton with acetic anhydride in sealed tubes at 130-140°C. The severe reaction conditions led to a white amorphous polymer but the product would have been severely degraded and the process difficult to control. Subsequent studies made by Liebermann, Francimont, Miles, the Bayer Company and by other workers led to techniques for controlled acetylation under less severe conditions. [Pg.621]

Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads... Fig. 1 Chemical structures of the polymers commonly used for preparation of beads poly (styrene-co-maleic acid) (=PS-MA) poly(methyl methacrylate-co-methacrylic acid) (=PMMA-MA) poly(acrylonitrile-co-acrylic acid) (=PAN-AA) polyvinylchloride (=PVC) polysulfone (=PSulf) ethylcellulose (=EC) cellulose acetate (=CAc) polyacrylamide (=PAAm) poly(sty-rene-Wocfc-vinylpyrrolidone) (=PS-PVP) and Organically modified silica (=Ormosil). PS-MA is commercially available as an anhydride and negative charges on the bead surface are generated during preparation of the beads...
The recent systematic investigations carried out by Newman et al. [37] were devoted to the viscosity, sedimentation, diffusion and osmotic pressure of nitro-celluloses prepared by nitrating non-purified cotton, purified cotton, and viscose fibres with mixed add containing phosphoric acid and phosphoric anhydride. [Pg.342]

A series of water-soluble fiber-reactive xanthene dyes has been prepared from the reaction of benzoxanthenedicarboxylic acid anhydride disulfonic acid with, for example, 3-aminophenyl- 3-hydroxyethyl sulfone to yield dyes, with high brilliance and good fastness properties for dyeing of or printing on leather, wool, silk, or cellulosic fibers (53). [Pg.406]


See other pages where Cellulose anhydrides, preparation is mentioned: [Pg.310]    [Pg.1057]    [Pg.14]    [Pg.294]    [Pg.251]    [Pg.251]    [Pg.265]    [Pg.137]    [Pg.139]    [Pg.244]    [Pg.225]    [Pg.381]    [Pg.55]    [Pg.77]    [Pg.340]    [Pg.11]    [Pg.173]    [Pg.344]    [Pg.348]    [Pg.624]    [Pg.629]   
See also in sourсe #XX -- [ Pg.29 , Pg.343 ]

See also in sourсe #XX -- [ Pg.343 ]




SEARCH



Anhydrides preparation

Cellulose anhydride

Cellulose prepared

© 2024 chempedia.info