Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellular activation

C. It is secreted along with noradrenaline by the adrenal medulla, from which it may be obtained. It may be synthesized from catechol. It is used as the acid tartrate in the treatment of allergic reactions and circulatory collapse. It is included in some local anaesthetic injections in order to constrict blood vessels locally and slow the disappearance of anaesthetic from the site of injection. Ultimately it induces cellular activation of phosphorylase which promotes catabolism of glycogen to glucose. [Pg.16]

Chemotherapeutic agents are grouped by cytotoxic mechanism. The alkylating agents, such as cyclophosphamide [50-18-0] and melphalan [148-82-3] interfere with normal cellular activity by alkylation deoxyribonucleic acid (DNA). Antimetabohtes, interfering with complex metaboHc pathways in the cell, include methotrexate [59-05-2] 5-fluorouracil [51-21-8] and cytosine arabinoside hydrochloride [69-74-9]. Antibiotics such as bleomycin [11056-06-7] and doxombicin [23214-92-8] h.a.ve been used, as have the plant alkaloids vincristine [57-22-7] and vinblastine [865-21-4]. [Pg.406]

One of these motifs, called the helix-turn-helix motif, is specific for DNA binding and is described in detail in Chapters 8 and 9. The second motif is specific for calcium binding and is present in parvalbumin, calmodulin, tro-ponin-C, and other proteins that bind calcium and thereby regulate cellular activities. This calcium-binding motif was first found in 1973 by Robert Kretsinger, University of Virginia, when he determined the structure of parvalbumin to 1.8 A resolution. [Pg.24]

Much of the biological work with colchicine in recent years has lain in its use to detect and measure certain types of cellular activity, and in the study of the effects it produces when applied to growing plants. [Pg.656]

Proteins are a diverse and abundant class of biomolecules, constituting more than 50% of the dry weight of cells. This diversity and abundance reflect the central role of proteins in virtually all aspects of cell structure and function. An extraordinary diversity of cellular activity is possible only because of the versatility inherent in proteins, each of which is specifically tailored to its biological role. The pattern by which each is tailored resides within the genetic information of cells, encoded in a specific sequence of nucleotide bases in DNA. [Pg.107]

Proteins are the agents of biolo ealfunction. Virtually every cellular activity is dependent on one or more particular proteins. Thus, a convenient way to classify the enormous number of proteins is by the biological roles they fill. Table 5.3 summarizes the classification of proteins by function and gives examples of representative members of each class. [Pg.120]

FIGURE 18.8 The ATP cycle in cells. ATP is formed via photosynthesis in phototrophic cells or catabolism in heterotrophic cells. Energy-requiring cellular activities are powered by ATP hydrolysis, liberating ADP and Pj. [Pg.577]

FIGURE 9.11 An example of a cellular system designed to study inflammatory processes related to asthma and arthritis. Multiple readouts (ELISA measurements) from each of four cell types are obtained under conditions of four contexts (mixture of stimulating agents). This results in a complex heat map of basal cellular activities that can be affected by compounds. The changes in the heat map (measured as ratios of basal to compound-altered activity) are analyzed statistically to yield associations and differences. [Pg.187]

Vinca alkaloids (vincristine, vinblastine, vindesine) are derived from the periwinkle plant (Vinca rosea), they bind to tubulin and inhibit its polymerization into microtubules and spindle formation, thus producing metaphase arrest. They are cell cycle specific and interfere also with other cellular activities that involve microtubules, such as leukocyte phagocytosis, chemotaxis, and axonal transport in neurons. Vincristine is mainly neurotoxic and mildly hematotoxic, vinblastine is myelosuppressive with veiy low neurotoxicity whereas vindesine has both, moderate myelotoxicity and neurotoxicity. [Pg.155]

Vinca alkaloids are derived from the Madagascar periwinkle plant, Catharanthus roseus. The main alkaloids are vincristine, vinblastine and vindesine. Vinca alkaloids are cell-cycle-specific agents and block cells in mitosis. This cellular activity is due to their ability to bind specifically to tubulin and to block the ability of the protein to polymerize into microtubules. This prevents spindle formation in mitosing cells and causes arrest at metaphase. Vinca alkaloids also inhibit other cellular activities that involve microtubules, such as leukocyte phagocytosis and chemotaxis as well as axonal transport in neurons. Side effects of the vinca alkaloids such as their neurotoxicity may be due to disruption of these functions. [Pg.1283]

Peculiar characteristics of chitins and chitosans are hemostatic action, anti-inflammatory effect, biodegradability, biocompatibihty, besides antimicrobial activity, retention of growth factors, release of glucosamine and M-acetylglucosamine monomers and oligomers, and stimulation of cellular activities [11,12,295-297]. [Pg.191]

Rabow AA, Shoemaker RH, Sausville EA, Coveil DG. Mining the National Cancer Institute s tumor-screening database identification of compounds with similar cellular activities. J Med Chem 2002 45 818-40. [Pg.372]

Marine toxins modify the functions of many different types of ion channels in animal cell membranes. These channels may be important for maintaining the cell s resting potential, for generating electrical membrane signals, such as impulses, and for controlling hormonally triggered or metabolic responses. Thus toxins may depolarize membranes, leading to a (sometimes transient) increase in cellular activities, or they may... [Pg.17]

The reasons for this are diverse and include the fact that models of cardiac cellular activity were among the first cell models ever developed. Analytical descriptions of virtually all cardiac cell types are now available. Also, the large-scale integration of cardiac organ activity is helped immensely by the high degree of spatial and temporal regularity of functionally relevant events and structures, as cells in the heart beat synchronously. [Pg.132]

Juszczak A, S Aono, MWW Adams (1991) The extremely thermophilic eubacterium Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J Biol Chem 266 13834-13841. [Pg.190]

The reversibility of QM adducts also creates numerous challenges. For example, measuring the full burden of DNA alkylation by a QM can be obscured by the loss of its labile products during or before chemical identification can be completed. Results from a deoxynucleotide model system indicated that only a small fraction of the possible adducts could be measured after the interval required for analysis of DNA. Perhaps the kinetic products of QMs also contribute to the cellular activity of these intermediates although this has yet to be explored. QM equivalents can be envisioned to migrate from one reversible nucleophile such as the N1 of adenine in such cofactors as ATP to another until quenched by a compound such as glutathione that is present in cells as a defense against undesirable electrophiles. [Pg.322]

Included in this table are criteria related to kinase inhibition, including detailed analyses of reversibility, detergent effects, and competition with ATP. Also listed are criteria for selectivity, cellular activity, and the physicochemical and in vitro ADME profiles. The final two criteria require the lead to be part of a series of compounds with demonstrated SAR. [Pg.182]

Generally, all of the assays used for characterization of hits in terms of potency, selectivity, function, and or cellular activity will continue to be used to characterize new compounds synthesized to identify leads. However, additional assays will normally be added to characterize compound selectivity more fully, to provide additional evidence that compounds are acting on the desired pathway and by the desired mechanism. [Pg.184]

CDK2 is involved with controlling normal cell proliferation. Disregulation in cancer makes this a good antitumor target. Pevarello et al. [62] describe the parallel optimization of enzyme inhibition potency, cellular activity, physicochemical properties, and PK. A low MW hit (MW = 201) was specifically selected with the... [Pg.204]

Nuclear medicine scans Method of body imaging that uses a radioactive tracer material (e.g., technetium and gallium) to produce body images. For example, bone scans detect uptake and cellular activity in areas of inflammation. [Pg.1572]


See other pages where Cellular activation is mentioned: [Pg.432]    [Pg.2132]    [Pg.2139]    [Pg.2145]    [Pg.2148]    [Pg.279]    [Pg.18]    [Pg.22]    [Pg.184]    [Pg.184]    [Pg.416]    [Pg.565]    [Pg.661]    [Pg.686]    [Pg.687]    [Pg.996]    [Pg.1023]    [Pg.1105]    [Pg.1308]    [Pg.425]    [Pg.432]    [Pg.2]    [Pg.68]    [Pg.103]    [Pg.59]    [Pg.185]    [Pg.185]    [Pg.192]    [Pg.208]    [Pg.275]   


SEARCH



ARS-2 mediated cellular activation

ATPases associated with a variety of cellular activities

Activation homogenates, intact cellular

Activity cellular

Activity cellular

Assay of Activities in the Cellular Compartment

Cellular Activity Should Require a Certain Affinity for the Target Enzyme

Cellular activation, chemokines

Cellular activities kinetic analysis

Cellular activities kinetics

Cellular signaling enzyme activation

Cellular systems activation

Environmental factors, regulating cellular activities

Enzymatic Activity and Effects on Cellular Lipid Metabolism of Endothelial Lipase

Introduction Cellular Coupling, Cardiac Activation Patterns and Arrhythmia

Mitogen-activated protein kinase cellular mechanisms

Platelet-activating factor cellular role

Redox-active cellular constituents

Stress Activated and Extra-cellular Kinases

Vitamin cellular activity

© 2024 chempedia.info