Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cellular systems activation

FIGURE 9.11 An example of a cellular system designed to study inflammatory processes related to asthma and arthritis. Multiple readouts (ELISA measurements) from each of four cell types are obtained under conditions of four contexts (mixture of stimulating agents). This results in a complex heat map of basal cellular activities that can be affected by compounds. The changes in the heat map (measured as ratios of basal to compound-altered activity) are analyzed statistically to yield associations and differences. [Pg.187]

The regulation of the total peripheral resistance also involves the complex interactions of several mechanisms. These include baroreflexes and sympathetic nervous system activity response to neurohumoral substances and endothelial factors myogenic adjustments at the cellular level, some mediated by ion channels and events at the cellular membrane and intercellular events mediated by receptors and mechanisms for signal transduction. As examples of some of these mechanisms, there are two major neural reflex arcs (Fig. 1). Baroreflexes are derived from high-pressure barorecep-tors in the aortic arch and carotid sinus and low-pressure cardiopulmonary baroreceptors in ventricles and atria. These receptors respond to stretch (high pressure) or... [Pg.273]

Calpain inhibition may represent an important mechanism for future drug development. Control of calpain activity may limit the invasive properties of cells and thereby provides a possible mechanism to limit the invasiveness of tumors or inhibits the development of chronic inflammation. For the moment, pharmacological inhibitors of calpains are still not capable of differentiating among different calpain isoforms in cellular systems or in vivo. The importance of calpains in diseases will continue to stimulate the development of new and better inhibitors. [Pg.313]

Fig. 2.2 Simplified scheme of oxidant/antioxidant regulation ofNF-KB activation. Different stimuli, leading to an increase of ROS generation inside the ceU, activate the phosphorylation of IkB inhibitory protein and the subsequent proteolysis. Thioredoxin (Trx) may reduce activated NF-kB proteins facilitating nuclear translocation.Qnce released from IkB, the NF-kB complex translocates into the nucleus and the binding to DNA domain in the promoters and enhancers of genes such as TNF-a, IL-1, proliferation and chemotactic factors, adhesion molecule. Some of these genes, in turn, may further induce NF-kB activation, leading to a vicious circle if the regulatory cellular system escapes from... Fig. 2.2 Simplified scheme of oxidant/antioxidant regulation ofNF-KB activation. Different stimuli, leading to an increase of ROS generation inside the ceU, activate the phosphorylation of IkB inhibitory protein and the subsequent proteolysis. Thioredoxin (Trx) may reduce activated NF-kB proteins facilitating nuclear translocation.Qnce released from IkB, the NF-kB complex translocates into the nucleus and the binding to DNA domain in the promoters and enhancers of genes such as TNF-a, IL-1, proliferation and chemotactic factors, adhesion molecule. Some of these genes, in turn, may further induce NF-kB activation, leading to a vicious circle if the regulatory cellular system escapes from...
Although several allelochemicals (primarily phenolic acids and flavonoids) have been shown to inhibit mineral absorption, only the phenolic acids have been studied at the physiological and biochemical levels to attempt to determine if mineral transport across cellular membranes can be affected directly rather than indirectly. Similar and even more definitive experiments need to be conducted with other allelochemicals that are suspected of inhibiting mineral absorption. Membrane vesicles isolated from plant cells are now being used to elucidate the mechanism of mineral transport across the plasma membrane and tonoplast (67, 68). Such vesicle systems actively transport mineral ions and thus can serve as simplified systems to directly test the ability of allelochemicals to inhibit mineral absorption by plant cells. [Pg.176]

Numerous studies have demonstrated that degradation products of (3-carotene exhibit deleterious effects in cellular systems (Alija et al., 2004, 2006 Hurst et al., 2005 Salerno et al., 2005 Siems et al., 2003). A mixture of (3-carotene degradation products exerts pro-apoptotic effects and cytotoxicity to human neutrophils (Salerno et al., 2005 Siems et al., 2003), and enhances the geno-toxic effects of oxidative stress in primary rat hepatocytes (Alija et al., 2004, 2006), as well as dramatically reduces mitochondrial activity in a human leukaemic cell line, K562, and RPE 28 SV4 cell line derived from stably transformed fetal human retinal pigmented epithelial cells (Hurst et al., 2005). As a result of degradation or enzymatic cleavage of (3-carotene, retinoids are formed, which are powerful modulators of cell proliferation, differentiation, and apoptosis (Blomhoff and Blomhoff, 2006). [Pg.330]

Figure 10.1 ThecyclicAMPsecondmessengersystem.Themostcommonsecond messenger system activated by the protein/peptide hormones and the catecholamines involves the formation of cAMP. This multistep process is initiated by binding of the hormone (the first messenger) to its receptor on the cell surface. The subsequent increase in the formation of cAMP (the second messenger) leads to the alteration of enzyme activity within the cell. A change in the activity of these enzymes alters cellular metabolism. Figure 10.1 ThecyclicAMPsecondmessengersystem.Themostcommonsecond messenger system activated by the protein/peptide hormones and the catecholamines involves the formation of cAMP. This multistep process is initiated by binding of the hormone (the first messenger) to its receptor on the cell surface. The subsequent increase in the formation of cAMP (the second messenger) leads to the alteration of enzyme activity within the cell. A change in the activity of these enzymes alters cellular metabolism.
Catalase and glutathione peroxidase provide two important cellular systems for eliminating H202. Catalase, a 56kDa cytosolic hemoprotein homotetramer that can act without a cofactor, although it may bind NAD(P)H, functions as a peroxidase to convert H202 to water. It can be irreversibly inactivated by oxidation and demonstrates decreased activity after ischemia-reperfusion. Catalase is more abundant in astrocytes than in neurons and in white matter than in gray matter, but it can be induced in neurons by neurotrophins. There is substantially less catalase activity in brain than in other tissues, such as liver. [Pg.570]

Walterscheid, J. P., Ullrich, S. E., and Nghiem, D. X., Platelet-activating factor, amolecular sensor for cellular damage, activates systemic immune suppression, J. Exp. Med. 195, 171-179, 2002. [Pg.272]

Teissier E, Fennrich S, Strazielle N, Daval JL, Ray D, et al. 1998. Drug metabolism in in vitro organotypic and cellular models of mammalian central nervous system activities of membrane-bound epoxide hydrolase and NADPH-cytochrome P-450 (c) reductase. Neurotoxicology 19 347-355. [Pg.90]

For example, mitochondrial reductive capacity is decreased with decreased cell numbers but is increased with cells that are activated, such as lymphocytic immune activation, or if cells adapt to the stress associated with toxicity, such as during mitochondrial biogenesis. Thus, mitochondrial reductive capacity might be either increased or decreased with toxicity. Similar contradictory interpretations might occur with other cellular activities, for which there is a compensatory adaptive increase before their failure. This biphasic change is referred to as hormesis and occurs not only with reductive mitochondrial activity but also with mitochondrial number, cell number, mitochondrial membrane potential, antioxidant system activity and numerous other activities. [Pg.333]

The genome of an organism provides a blue print for its structural and functional attributes. Genome functions through the synthesis, regulation, and activity of proteins. A dynamic and well balanced network of DNA-protein, RNA-protein, and protein-protein interactions (PPIs) maintain the cellular system as a complex but cohesive unit (1). Proteomics serves as a medium to unravel protein functions and ultimately to understand a living system or a disease condition (2-5). Over the years, classical genetic... [Pg.67]


See other pages where Cellular systems activation is mentioned: [Pg.205]    [Pg.205]    [Pg.1940]    [Pg.186]    [Pg.186]    [Pg.450]    [Pg.1238]    [Pg.1249]    [Pg.156]    [Pg.324]    [Pg.303]    [Pg.120]    [Pg.365]    [Pg.422]    [Pg.436]    [Pg.19]    [Pg.530]    [Pg.556]    [Pg.866]    [Pg.365]    [Pg.95]    [Pg.206]    [Pg.99]    [Pg.682]    [Pg.280]    [Pg.204]    [Pg.124]    [Pg.17]    [Pg.109]    [Pg.285]    [Pg.46]    [Pg.54]    [Pg.390]    [Pg.103]    [Pg.97]    [Pg.285]    [Pg.316]    [Pg.428]    [Pg.867]    [Pg.669]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Activity cellular

Cellular activation

Cellular systems

© 2024 chempedia.info