Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium Cathodes

Figure 8.42 shows the basic configuration of electrofiltration, where an electric field is applied across micro or ultrafiltration membranes in flat sheet, tubular, and SWMs. The electrode is installed on either side of the membrane with the cathode on the permeate side and the anode on the feed side. Usually, the membrane support is made of stainless steel or the membrane itself is made of conductive materials to form the cathode. Titanium coated with a thin layer of a noble metal such as platinum could, according to Bowen [93], be one of the best anode materials. Wakeman and Tarleton [94] analyzed the particle trajectory in a combined fluid flow and electric field and suggested that a tubular configuration should be more effective in use of electric power than flat and multitubular module. [Pg.224]

The Ti02 film, being an n-type semiconductor, is electronically conductive. As a cathode, titanium permits electrochemical reduction of ions in an aqueous electrolyte. On the other hand, very high resistance to anodic current flow through the passive oxide film (i.e., significant anodic polarization) can be expected in most aqueous solutions. Elevated anodic pitting (breakdown and repassivation) potentials can also be expected with many titanium alloys. [Pg.598]

Titanium has potential use in desalination plants for converting sea water into fresh water. The metal has excellent resistance to sea water and is used for propeller shafts, rigging, and other parts of ships exposed to salt water. A titanium anode coated with platinum has been used to provide cathodic protection from corrosion by salt water. [Pg.76]

Fig. 10. Dow diaphragm ceU (a) Six-ceU series, (b) Internal ceU parts a, cathode elements b, cathode pocket elements c, copper spring cHps d, perforated steel backplate e, brine inlet f, chlorine oudet g, copper backplate h, titanium backplate i, anode element. Fig. 10. Dow diaphragm ceU (a) Six-ceU series, (b) Internal ceU parts a, cathode elements b, cathode pocket elements c, copper spring cHps d, perforated steel backplate e, brine inlet f, chlorine oudet g, copper backplate h, titanium backplate i, anode element.
The lshi2uka cell (39—41), another multipolar cell that has been ia use by Showa Titanium (Toyama, Japan), is a cylindrical cell divided ia half by a refractory wall. Each half is further divided iato an electrolysis chamber and a metal collection chamber. The electrolysis chamber contains terminal and center cathodes, with an anode placed between each cathode pair. Several bipolar electrodes are placed between each anode—cathode pair. The cell operates at 670°C and a current of 50 kA, which is equivalent to a 300 kA monopolar cell. [Pg.319]

The electrolysis is conducted at 90—95°C and an anode current density of about 50 120 A/m when using lead alloy anodes and lead cathodes. Using graphite electrodes, the current density is from 70 100 A/m using titanium anodes and graphite cathodes, the current density is 50 80 A/m (82). [Pg.514]

Cathodic Protection Systems. Metal anodes using either platinum [7440-06 ] metal or precious metal oxide coatings on titanium, niobium [7440-03-17, or tantalum [7440-25-7] substrates are extensively used for impressed current cathodic protection systems. A prime appHcation is the use of platinum-coated titanium anodes for protection of the hulls of marine vessels. The controUed feature of these systems has created an attractive alternative... [Pg.119]

Other Metals. AH the sodium metal produced comes from electrolysis of sodium chloride melts in Downs ceUs. The ceU consists of a cylindrical steel cathode separated from the graphite anode by a perforated steel diaphragm. Lithium is also produced by electrolysis of the chloride in a process similar to that used for sodium. The other alkaH and alkaHne-earth metals can be electrowon from molten chlorides, but thermochemical reduction is preferred commercially. The rare earths can also be electrowon but only the mixture known as mischmetal is prepared in tonnage quantity by electrochemical means. In addition, beryIHum and boron are produced by electrolysis on a commercial scale in the order of a few hundred t/yr. Processes have been developed for electrowinning titanium, tantalum, and niobium from molten salts. These metals, however, are obtained as a powdery deposit which is not easily separated from the electrolyte so that further purification is required. [Pg.175]

Sodium nitrite has been synthesized by a number of chemical reactions involving the reduction of sodium nitrate [7631-99-4] NaNO. These include exposure to heat, light, and ionizing radiation (2), addition of lead metal to fused sodium nitrate at 400—450°C (2), reaction of the nitrate in the presence of sodium ferrate and nitric oxide at - 400° C (2), contacting molten sodium nitrate with hydrogen (7), and electrolytic reduction of sodium nitrate in a cell having a cation-exchange membrane, rhodium-plated titanium anode, and lead cathode (8). [Pg.199]

Solvent for Electrolytic Reactions. Dimethyl sulfoxide has been widely used as a solvent for polarographic studies and a more negative cathode potential can be used in it than in water. In DMSO, cations can be successfully reduced to metals that react with water. Thus, the following metals have been electrodeposited from their salts in DMSO cerium, actinides, iron, nickel, cobalt, and manganese as amorphous deposits zinc, cadmium, tin, and bismuth as crystalline deposits and chromium, silver, lead, copper, and titanium (96—103). Generally, no metal less noble than zinc can be deposited from DMSO. [Pg.112]

In galvanic coupling, titanium is usually the cathode metal and consequently not attacked. The galvanic potential in flowing seawater in relation to other metals is shown in Table 10. Because titanium is a cathode metal, hydrogen absorption may be of concern, as it occurs with titanium complexed to iron (38). [Pg.104]

The principal use of titanium sulfides is as a cathode material ia high efficieacy batteries (11). In these appHcations, the titanium disulfide acts as a host material for various alkafl or alkaline-earth elements. [Pg.133]

Uses. In spite of unique properties, there are few commercial appUcations for monolithic shapes of borides. They are used for resistance-heated boats (with boron nitride), for aluminum evaporation, and for sliding electrical contacts. There are a number of potential uses ia the control and handling of molten metals and slags where corrosion and erosion resistance are important. Titanium diboride and zirconium diboride are potential cathodes for the aluminum Hall cells (see Aluminum and aluminum alloys). Lanthanum hexaboride and cerium hexaboride are particularly useful as cathodes ia electronic devices because of their high thermal emissivities, low work functions, and resistance to poisoning. [Pg.219]

Anode Applications. Graphite has been used as the primary material for electrolysis of brine (aqueous) and fused-salt electrolytes, both as anode and cathode. Technological advances, however, have resulted in a dimensionally stable anode (DSA) consisting of precious metal oxides deposited on a titanium substrate that has replaced graphite as the primary anode (38—41) (see Alkali and chlorine products). [Pg.521]

Ma.nga.neseDioxide. Graphite plates used as anodes in this process are coated with MnO during electrolysis. The anodes are removed from the solution periodically and the MnO is removed by mechanical methods. Graphite can also be used as the cathode material. Titanium is used as anode materials where high quaHty MnO is desired. [Pg.521]

The tank house is divided into commercial and stripper sections. In the latter, one-day deposits are prepared by electrorefining anode copper onto oiled copper, stainless steel, or titanium blanks. These copper sheets are stripped from the blanks and fabricated into starter sheets for the commercial sections as starting cathodes. After 9—15 days, depending on the tank house, hill-term cathodes are pulled and washed and either sent to the casting department or sold direcdy. [Pg.202]

The electrolytic cells shown ia Figures 2—7 represent both monopolar and bipolar types. The Chemetics chlorate cell (Fig. 2) contains bipolar anode/cathode assembhes. The cathodes are Stahrmet, a registered trademark of Chemetics International Co., and the anodes are titanium [7440-32-6] Ti, coated either with mthenium dioxide [12036-10-17, RUO2, or platinum [7440-06-4] Pt—indium [7439-88-5] Ir (see Metal anodes). Anodes and cathodes are joined to carrier plates of explosion-bonded titanium and Stahrmet, respectively. Several individual cells electrically connected in series are associated with one reaction vessel. [Pg.73]


See other pages where Titanium Cathodes is mentioned: [Pg.1323]    [Pg.377]    [Pg.1352]    [Pg.685]    [Pg.1323]    [Pg.377]    [Pg.1352]    [Pg.685]    [Pg.142]    [Pg.191]    [Pg.488]    [Pg.489]    [Pg.491]    [Pg.494]    [Pg.496]    [Pg.497]    [Pg.498]    [Pg.499]    [Pg.502]    [Pg.477]    [Pg.319]    [Pg.120]    [Pg.176]    [Pg.67]    [Pg.534]    [Pg.311]    [Pg.108]    [Pg.100]    [Pg.100]    [Pg.117]    [Pg.523]    [Pg.283]    [Pg.76]    [Pg.77]    [Pg.77]    [Pg.80]   
See also in sourсe #XX -- [ Pg.287 , Pg.288 ]

See also in sourсe #XX -- [ Pg.564 ]




SEARCH



Titanium cathode, current-potential

Titanium cathodic protection

© 2024 chempedia.info