Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic selectivity effect

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

Data accunnilated in the last years on the Ft/Cu alloys, in particular on the 1) surface composition, 2) electronic structure, 3) adsorption properties, 4) catalytic behaviour and 5) various side effects, make a detailed discussion possible of the catalytic selectivity and mechanism of hydrocarbon reactions. [Pg.267]

Presently the catalytic selective NOx reduction by ammonia is efficient and widespread through the world for stationary sources. The remarkable beneficial effect of 02 for the complete reduction of NO into nitrogen is usually observed between 200 and 400°C. However, such a technology is not applicable for mobile sources due to the toxicity of ammonia and vanadium, which composes the active phase in vanadia-titania-based catalysts. Main drawbacks related to storing and handling of ammonia as well as changes in the load composition with subsequent ammonia slip considerably affect the reliability of such a process. On the other hand, the use of urea for heavy-duty vehicles is of interest with the in situ formation of ammonia. [Pg.308]

In view of catalytic potential applications, there is a need for a convenient means of characterization of the porosity of new catalyst materials in order to quickly target the potential industrial catalytic applications of the studied catalysts. The use of model test reactions is a characterization tool of first choice, since this method has been very successful with zeolites where it precisely reflects shape-selectivity effects imposed by the porous structure of tested materials. Adsorption of probe molecules is another attractive approach. Both types of approaches will be presented in this work. The methodology developed in this work on zeolites Beta, USY and silica-alumina may be appropriate for determination of accessible mesoporosity in other types of dealuminated zeolites as well as in hierarchical materials presenting combinations of various types of pores. [Pg.217]

The alkylation of phenol investigated over H-MCM-22, H-ITQ-2 and H-MCM-36 showed that the delamelation and pillaring did not improve the catalytic activity and this was explained on the secondary processes taking place during the preparation of the corresponding materials, and which strongly affect the total acidity and the acidity on the external surface. Also, the composition of the reaction products is not influenced to a considerable extent by product shape selectivity effects. This seems to show that the tert-butylation reaction preferentially proceed at (or close to) the external surface of the zeolite layers. [Pg.359]

Effect of mass and heat transfer on catalytic selectivity... [Pg.168]

In practice, of course, it is rare that the catalytic reactor employed for a particular process operates isothermally. More often than not, heat is generated by exothermic reactions (or absorbed by endothermic reactions) within the reactor. Consequently, it is necessary to consider what effect non-isothermal conditions have on catalytic selectivity. The influence which the simultaneous transfer of heat and mass has on the selectivity of catalytic reactions can be assessed from a mathematical model in which diffusion and chemical reactions of each component within the porous catalyst are represented by differential equations and in which heat released or absorbed by reaction is described by a heat balance equation. The boundary conditions ascribed to the problem depend on whether interparticle heat and mass transfer are considered important. To illustrate how the model is constructed, the case of two concurrent first-order reactions is considered. As pointed out in the last section, if conditions were isothermal, selectivity would not be affected by any change in diffusivity within the catalyst pellet. However, non-isothermal conditions do affect selectivity even when both competing reactions are of the same kinetic order. The conservation equations for each component are described by... [Pg.171]

EFFECT OF INTERPARTICLE MASS TRANSFER ON CATALYTIC SELECTIVITY... [Pg.173]

The catalytic isomerization of 1-methylnaphthalene and all lation of 2-methylnaphtha-lene with methanol were studied at ambient pressure in a flow-type fixed bed reactor. Acid zeolites with a Spaciousness Index between ca. 2 and 16 were found to be excellent isomerization catalysts which completely suppress the undesired disproportionation into nwhthalene and dimethylnaphthalenes due to transition state shape selectivity. Examples are HZSM-12, H-EU-1 and H-Beta. Optimum catalysts for the shape selective methylation of 2-methylnaphthalene are HZSM-5 and HZSM-li. All experimental finding concerning this reaction can be readily accounted for by conventional product shape selectivity combined with coke selectivation, so there is no need for invoking shape selectivity effects at the external surface or "nest effects", at variance with recent pubhcations from other groups. [Pg.291]

Molecular sieve effects and their influence on catalytic selectivity offer important possibilities. Chen (48) showed that for a given reaction synthetic offretite, with its 12-membered rings of oxygen ions, exhibited no selectivity where the presence of small amounts of erionite (3%) resulted in an effective blocking of the large openings and the creation of selectivity. This emphasizes the possible influence of impurities on the practical uses of zeolite catalysts. [Pg.451]

From this example it is clear that the selectivity for (a) dehydrogenation, (b) isomerization, and (c) cracking is likely to be related to the relative concentrations of mono-, di-, and tri-adsorbed complexes, etc. More generally, the selectivity of a catalytic reaction will depend on the relative chance for a molecule adsorbed on -surface atoms either to desorb or become adsorbed on (n + 1) surface atoms. This idea easily permits us to understand that dilution of an element A, capable of forming chemisorption bonds with a given molecule, with an inert element B will lower the ratio of poly- to monoadsorbed molecules and have an effect on catalytic selectivity. We will call this concept the primary ensemble effect. [Pg.101]

Post-synthesis methods (pore-size engineering) allow an existing shape-selectivity effect to be intensified, and also a new one to be established. However, normally not only the pore size will be influenced by most of these methods, but also the catalytic activity. Vansant [104] gives a classification of post-synthesis modification methods which covers the entire range of zeolite applications (gas separation, gas purification, encapsulation of gases and catalysis). [Pg.366]

Protonic zeolites find industrial applications as acid catalysts in several hydrocarbon conversion reactions. The excellent activity of these materials is due to two main properties a strong Bronsted acidity of bridging Si—(OH)-Al sites (Scheme 3.4, right) generated by the presence of aluminum inside the silicate framework and shape selectivity effects due to the molecular sieving properties associated with the well defined crystal pore sizes, where at least some of the catalytically active sites are located. [Pg.144]

The adsorption of linear alkanes on ZSM-S is governed by geometric and packing effects, which result in pronounced selectivity effects, and even in an inversion of the normal adsorption selectivity. These effects are certainly important with respect to catalytic and separative applications, and will be studied in further work. [Pg.233]

With the addition of a catalytic centre, an imprinted recognition site can be transformed into an enzyme mimetic material offering substrate selective catalysis. Over the past decade a few research groups have studied catalytic effects of imprinted metal oxides in esterification reactions. In this section a brief overview will be given on their efforts to understand the catalytic selectivity and structure of the active site. For additional reading an excellent review can be found by Davis et al. [46]. [Pg.235]


See other pages where Catalytic selectivity effect is mentioned: [Pg.101]    [Pg.101]    [Pg.108]    [Pg.679]    [Pg.45]    [Pg.1]    [Pg.145]    [Pg.266]    [Pg.57]    [Pg.168]    [Pg.183]    [Pg.629]    [Pg.292]    [Pg.383]    [Pg.220]    [Pg.1034]    [Pg.28]    [Pg.69]    [Pg.108]    [Pg.131]    [Pg.308]    [Pg.308]    [Pg.154]    [Pg.179]    [Pg.43]    [Pg.277]    [Pg.227]    [Pg.271]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Catalytic effect

Catalytic selective

Catalytic selectivity

Selectivity effects

© 2024 chempedia.info