Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic processes polymerization

A low temperature catalytic process has been reported (64). The process involves the divalent nickel- or zero-valent palladium-catalyzed self-condensation of halothiophenols in an alcohol solvent. The preferred halothiophenol is -bromothiophenol. The relatively poor solubiHty of PPS under the mild reaction conditions results in the synthesis of only low molecular weight PPS. An advantage afforded by the mild reaction conditions is that of making telecheHc PPS with functional groups that may not survive typical PPS polymerization conditions. [Pg.444]

Through the 19.30s, Ipatieff led UOP in its effort to develop two catalytic processes for the production of high-octane fuel alkylation and polymerization— the first, a reaction of a hydrocarbon with an olefin (double-bonded compound) the second, the formation of long molecules from smaller ones. Both processes produce high-octane blending compounds that increase the quality of cracked gasoline. [Pg.680]

The concept of an active center in catalytic polymerization is much more meaningful as compared with that referred to catalytic processes in... [Pg.194]

The main use of propylene is for polymerization to polypropylene, a process similar to the manufacture of high-density polyethylene (i.e., a low-pressure, catalytic process). Textile hhers made from polypropylene are relatively low-cost and have particularly good properties, such as high resistance to abrasion and soiling for use in furniture upholstery and indoor/outdoor carpeting. [Pg.127]

Much of the recent interest in insertion reactions undeniably stems from the emphasis placed on development of homogeneous catalysis as a rational discipline. One or more insertion is involved in such catalytic processes as the hydroformylation (31) or the polymerization of olefins 26, 75) and isocyanides 244). In addition, many insertion reactions have been successfully employed in organic and organometallic synthesis. The research in this general area has helped systematize a large body of previously unrelated facts and opened new areas of chemistry for investigation. Heck 114) and Lappert and Prokai 161) provide a comprehensive compilation and a systematic discussion of a wide variety of insertion reactions in two relatively recent (1965 and 1967) reviews. [Pg.90]

Most small olefins produced in the chemical industry are used to make polymers, with a global production of the order of 100 million tons per year. Polymers are macromolecules with molecular weights of typically lO" to 10 and consist of linear or branched chains, or networks built up from small monomers such as ethylene, propylene, vinyl chloride, styrene, etc. The vast majority of polymers are made in catalytic processes. Here we concentrate on ethylene polymerization over chromium catalysts as an example [M.P. McDaniel, Adv. Catal. 33 (1985) 47]. [Pg.374]

The ability of complexes to catalyze several important types of reactions is of great importance, both economically and intellectually. For example, isomerization, hydrogenation, polymerization, and oxidation of olefins all can be carried out using coordination compounds as catalysts. Moreover, some of the reactions can be carried out at ambient temperature in aqueous solutions, as opposed to more severe conditions when the reactions are carried out in the gas phase. In many cases, the transient complex species during a catalytic process cannot be isolated and studied separately from the system in which they participate. Because of this, some of the details of the processes may not be known with certainty. [Pg.780]

The use of organic halide to reactivate a decayed catalyst has been known for other catalytic processes involving transition metal catalysts, especially in olefin polymerization reactions (18-21). [Pg.281]

Borstar A catalytic process for polymerizing ethylene. Use of two reactors, a loop reactor and a gas-phase reactor, allows better control of molecular weight distribution. The loop reactor operates under super-critical conditions to avoid bubble formation. Either Ziegler-Natta or metallocene catalysts can be used. The first commercial unit was installed in Porvoo, Finland, in 1995. [Pg.43]

To date, the most frequently used ligand for combinatorial approaches to catalyst development have been imine-type ligands. From a synthetic point of view this is logical, since imines are readily accessible from the reaction of aldehydes with primary or secondary amines. Since there are large numbers of aldehydes and amines that are commercially available the synthesis of a variety of imine ligands with different electronic and steric properties is easily achieved. Additionally, catalysts based on imine ligands are useful in a number of different catalytic processes. Libraries of imine ligands have been used in catalysts of the Strecker reaction, the aza-Diels-Alder reaction, diethylzinc addition, epoxidation, carbene insertions, and alkene polymerizations. [Pg.439]

It is in the very nature of the catalytic process that the intermediate compound formed between catalyst and reactant is of extreme lability therefore not many cases are on record where the isolation by chemical means, or identification by physical methods, of intermediate compounds has been achieved concomitant with the evidence that these compounds are true intermediaries and not products of side reactions or artifacts. The formation of ethyl sulfuric acid in ether formation, catalyzed by HjSO , and of alkyl phosphates in olefin polymerization, catalyzed by liquid phosphoric acid, are examples of established intermediate compound formation in homogeneous catalysis. With regard to heterogeneous catalysis, where catalyst and reactant are not in the same... [Pg.65]

He was a Professor of Industrial Chemistry, School of Engineering, Polytechnic Institute of Milan, Milan, Italy since 1937. He became involved with applied research, which led to the production of synthetic rubber in Italy, at the Institute in 1938. He was also interested in the synthesis of petrochemicals such as butadiene and, later, oxo alcohols. At the same time he made important contributions to the understanding of the kinetics of some catalytic processes in both the heterogeneous (methanol synthesis) and homogeneous (oxosynthesis) phase. In 1950, as a result of his interest in petrochemistry, he initiated the research on the use of simple olefins for the synthesis of high polymers. This work led to the discovery, in 1954, of stereospecific polymerization. In this type of polymerization nonsymmetric monomers (e.g., propylene, 1-butene, etc.) produce linear high polymers with a stereoregular structure. [Pg.382]

A major part of the work described in this section has been carried out with the aim of applying these silsesquioxane complexes of Ti, Zr and Hf in catalytic processes such as ethylene polymerization, olefin epoxidation and Oppenauer oxidation. These catalytic aspects have been highlighted in several recent review articles. [Pg.136]

The evolution of chemical engineering from petroleum refining, through petrochemicals and polymers, to new applications is de.scribed so that students can see the relationships between past, present, and future technologies. Applications such as catalytic processes, environmental modeling, biological reactions, reactions involving solids, oxidation, combustion, safety, polymerization, and multiphase reactors are also described. [Pg.537]

These are long chain molecules consisting of multiples of repeat units (monomers). These are linked by covalent bonds in a three-dimensional network which is characteristic of a polymer. The magnitude of the length of a polymeric molecule can extend up to several hundred nanometres. The dimensions of individual polymer molecules and their arrangement define the structure of polymers and their properties. Many catalytic processes are aimed at producing polymers as we describe in the following chapters. (Polymers can also be used as catalyst supports.)... [Pg.24]

Many homogeneous catalytic processes, in particular of anionic nature, are known, in which the polymerization takes place by stepwise addition (polymerization of ethylene oxide (34) of ethylene at low pressure and temperature with ALfia (7, 35), of styrene by Szwarc catalysts (36), for which the growth of the macromolecule can last for a very long time). This led some researchers to talk of a life of macromolecules and of living molecules (37). [Pg.17]

Therefore, with the catalyst under consideration, ground a-titanium tri-chloride-AlCl(CjH6)2, the totality of active centers is involved in the catalytic process, once the polymerization starts. We may deduce from the time constancy of the polymerization rate from the very beginning of the reaction that, in this case, the number of active centers is invariable and that the calculated value corresponds to the number of conventional active centers involved in the polymerization, in steady-state conditions. [Pg.59]

The data here related on the kinetics of the propylene polymerization and of the transfer processes and the studies of the catalysts carried out with C-labelled alkylaluminums, derive from a series of researches mostly carried out some time ago, when the knowledge of the mechanism of the considered catalytic processes was still rather limited. Nevertheless, it helped remarkably to know these new processes of anionic coordinated polymerization their true catalytic nature (which regard to a-TiCU) differentiates them from the more usual polymerization processes (radicalic) which, actually, are not catalytic. They substantially contributed to demonstrate that the anionic coordinated polymerization is a step-wise addition process in which each monomeric unit inserts itself into a metal carbon bond of the catalytic complex. [Pg.64]

Alkenes are known to form d - complexes with low valent transition metal ions (or atoms), thus stabilizing their low valent complexes (152). Complexes of this type are key intermediates in a variety of catalytic processes, e.g., hydrogenations, polymerizations,... [Pg.298]

A combination of the thermal polymerization process and the U.O.P. catalytic process was introduced in 1937 at the Shamrock Oil and Gas Co., Sunray, Tex. (28). In 1934 the Shell Development Co. introduced the cold acid process (18), which selectively polymerizes isobutene, using sulfuric acid as catalyst. The hot acid process was also developed by them and differed from the cold acid process in polymerizing all C4 olefins. Both products are predominantly the dimer. The cold acid process produces a large pro-... [Pg.85]


See other pages where Catalytic processes polymerization is mentioned: [Pg.772]    [Pg.772]    [Pg.243]    [Pg.2594]    [Pg.148]    [Pg.218]    [Pg.47]    [Pg.87]    [Pg.87]    [Pg.179]    [Pg.34]    [Pg.10]    [Pg.13]    [Pg.204]    [Pg.98]    [Pg.201]    [Pg.217]    [Pg.78]    [Pg.56]    [Pg.300]    [Pg.224]    [Pg.202]    [Pg.203]    [Pg.351]    [Pg.178]    [Pg.41]    [Pg.215]    [Pg.215]    [Pg.67]   
See also in sourсe #XX -- [ Pg.355 ]




SEARCH



Catalytic processes

© 2024 chempedia.info