Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalytic bond formation

However, till now catalytic reactions of ethene and carbon dioxide are not known. But the great number of successful stoichiometric reactions between these two molecules makes it probable to achieve the catalytical bond formation in the near future. A short survey about the various reactions of ethene and other alkenes with carbon dioxide is given in the following sections in the order of transition metals applied. [Pg.59]

A rational classification of reactions based on mechanistic considerations is essential for the better understanding of such a broad research field as that of the organic chemistry of Pd. Therefore, as was done in my previous book, the organic reactions of Pd are classified into stoichiometric and catalytic reactions. It is essential to form a Pd—C cr-bond for a synthetic reaction. The Pd— C (T-bond is formed in two ways depending on the substrates. ir-Bond formation from "unoxidized forms [1] of alkenes and arenes (simple alkenes and arenes) leads to stoichiometric reactions, and that from oxidized forms of alkenes and arenes (typically halides) leads to catalytic reactions. We first consider how these two reactions differ. [Pg.13]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

Several Pd(0) complexes are effective catalysts of a variety of reactions, and these catalytic reactions are particularly useful because they are catalytic without adding other oxidants and proceed with catalytic amounts of expensive Pd compounds. These reactions are treated in this chapter. Among many substrates used for the catalytic reactions, organic halides and allylic esters are two of the most widely used, and they undergo facile oxidative additions to Pd(0) to form complexes which have o-Pd—C bonds. These intermediate complexes undergo several different transformations. Regeneration of Pd(0) species in the final step makes the reaction catalytic. These reactions of organic halides except allylic halides are treated in Section 1 and the reactions of various allylic compounds are surveyed in Section 2. Catalytic reactions of dienes, alkynes. and alkenes are treated in other sections. These reactions offer unique methods for carbon-carbon bond formation, which are impossible by other means. [Pg.125]

The efficiency of inactivation by covalent bond formation vs release of the reactive species into solution has been described by its partition ratio. The most efficient inactivators have catalytic partition ratios of 0, in which case each inhibitor molecule leads to inactivation of the enzyme. To this date, many of these inhibitors have been designed, and alternative names like suicide substrate, Trojan Horse inactivator, enzyme induced inactivator, inhibitor, and latent inactivator have been used for this class of inhibitors. A number of comprehensive reviews are available (26—32). [Pg.322]

It has been proposed that protonation or complex formation at the 2-nitrogen atom of 14 would enhance the polarization of the r,6 -7i system and facilitate the rearrangement leading to new C-C bond formation. The equilibrium between the arylhydrazone and its ene-hydrazine tautomer is continuously promoted to the right by the irreversible rearomatization in stage II of the process. The indolization of arylhydrazones on heating in the presence of (or absence of) solvent under non-catalytic conditions can be rationalized by the formation of the transient intermediate 14 (R = H). Under these thermal conditions, the equilibrium is continuously pushed to the right in favor of indole formation. Some commonly used catalysts in this process are summarized in Table 3.4.1. [Pg.118]

Saturation of the aromatic ring of pentopril analogues is also consistent with ACE inhibition as demonstrated by the oral activity of indolapril (23). The necessary heterocyclic component (21) can in principle be prepared by catalytic perhydrogenation (Rh/C, HOAc) of the corresponding indole. A single isomer predominates. The product is condensed by amide bond formation with the appropriate alanylhomophenylalanyl dipeptide ester 20 to give 22. Selective saponification to 23 could be accomplished by treatment with HCl gas. Use of the appropriate stereoisomers (prepared by resolution processes) produces chiral indolapril [8]. [Pg.128]

A 1 1 mixture of thiols (7 and 2), on treatment with oxygen in the presence of a catalytic amount of Et3N, gives one unsymmetrical (4) and two symmetrical disulfides (3 and 5) (Eq. 4). As a measure of the degree of the recognition between 7 and 2 in the oxidation, the selectivity (r) is employed which is represented by the logarithmic ratio of the yield of 4 to twice that of 3 (Eq. 5). The r is so defined as to become zero when oxidation yields the three disulfides in a 1 2 1 ratio. In the present case, the recognition process is followed by covalent bond formation. [Pg.94]

The alkylation of allylic sulfides with stable anions takes place by using stoichiometric amounts of molybdenum hexacarbonyl86. Contrary to the catalytic reaction, the C —C bond formation occurs at the less hindered site of allyl groups in the stoichiometric reaction. [Pg.878]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

In the presence of a catalytic amount of triethylamine, a readily enolizable carbonyl compound like acetylacetone (25) can undergo a Michael-type addition onto the triple bond of 23 with C-C bond formation, and subsequent 1,2-addition of the hydroxy group with elimination of an alcohol (MeOH or EtOH) to eventually yield a pyranylidene complex 28 (mode E) [29]. The most versatile access to / -donor-substituted ethenylcarbene complexes 27 is by Michael-type additions of nucleophiles, including alcohols [30-32], primary... [Pg.25]

A variety of such ternary catalytic systems has been developed for diastereoselective carbon-carbon bond formations (Table). A Cp-substituted vanadium catalyst is superior to the unsubstituted one,3 whereas a reduced species generated from VOCl3 and a co-reductant is an excellent catalyst for the reductive coupling of aromatic aldehydes.4 A trinuclear complex derived from Cp2TiCl2 and MgBr2 is similarly effective for /-selective pinacol coupling.5 The observed /-selectivity may be explained by minimization of steric effects through anti-orientation of the bulky substituents in the intermediate. [Pg.15]

Use of Ar,AT-Coordinating Ligands in Catalytic Asymmetric C-C Bond Formations ... [Pg.93]

The above-described structures are the main representatives of the family of nitrogen ligands, which cover a wide spectrum of activity and efficiency for catalytic C - C bond formations. To a lesser extent, amines or imines, associated with copper salts, and metalloporphyrins led to good catalysts for cyclo-propanation. Interestingly, sulfinylimine ligands, with the chirality provided solely by the sulfoxide moieties, have been also used as copper-chelates for the asymmetric Diels-Alder reaction. Amide derivatives (or pyridylamides) also proved their efficiency for the Tsuji-Trost reaction. [Pg.144]

Abstract Organic syntheses catalyzed by iron complexes have attracted considerable attention because iron is an abundant, inexpensive, and environmentally benign metal. It has been documented that various iron hydride complexes play important roles in catalytic cycles such as hydrogenation, hydrosilylation, hydro-boration, hydrogen generation, and element-element bond formation. This chapter summarizes the recent developments, mainly from 2000 to 2009, of iron catalysts involving hydride ligand(s) and the role of Fe-H species in catalytic cycles. [Pg.27]

Scheme 34 Proposed catalytic cycle for the C-C bond formation... Scheme 34 Proposed catalytic cycle for the C-C bond formation...
Our groups developed a catalytic C-CN bond cleavage of organonitriles catalyzed by the Fe complex (Scheme 49) [163, 164]. In this reaction, an organonitrile R-CN and EtsSiH are converted into EtsSiCN as a result of the C-CN bond cleavage and the Si-CN bond formation, and the R-H product. This is the first example of the catalytic C-CN bond cleavage of acetonitrile. [Pg.61]

There are relatively few examples of C-C bond formation on solid surfaces under UHV conditions. There are virtually no examples of catalytic C-C bond formation under such conditions. Perhaps the closest precedent for the present studies on reduced Ti02 can be found in the studies of Lambert et al. on single crystal Pd surfaces. Early UHV studies demonstrated that acetylene could be trimerized to benzene on the Pd(lll) surface in both TPD and modulated molecular beam experiments [9,10]. Subsequent studies by the same group and others [11,12] demonstrated that this reaction could be catalyzed at atmospheric pressure both by palladium single crystals and supported palladium catalysts. While it is not clear that catalysis was achieved in UHV, these and subsequent studies have provided valuable insights into the mechanism of this reaction as catalyzed by metals, including spectroscopic evidence for the hypothesized metallacyclopentadiene intermediates [10,13,14]. [Pg.298]

Catalytic transformations can be divided on the basis of the catalyst-type - homogeneous, heterogeneous or enzymatic - or the type of conversion. We have opted for a compromise a division based partly on type of conversion (reduction, oxidation and C-C bond formation, and partly on catalyst type (solid acids and bases, and biocatalysts). Finally, enantioselective catalysis is a recurring theme in fine chemicals manufacture, e.g. in the production of pharmaceutical intermediates, and a separate section is devoted to this topic. [Pg.30]


See other pages where Catalytic bond formation is mentioned: [Pg.68]    [Pg.68]    [Pg.176]    [Pg.182]    [Pg.6]    [Pg.393]    [Pg.368]    [Pg.457]    [Pg.272]    [Pg.229]    [Pg.937]    [Pg.89]    [Pg.139]    [Pg.248]    [Pg.325]    [Pg.208]    [Pg.208]    [Pg.215]    [Pg.95]    [Pg.95]    [Pg.103]    [Pg.143]    [Pg.144]    [Pg.311]    [Pg.80]    [Pg.306]    [Pg.480]    [Pg.63]   


SEARCH



Catalytic bond formation Heck reaction

Catalytic bond formation Sonogashira coupling

Catalytic bond formation Stille coupling

Catalytic bond formation Suzuki coupling

Catalytic bond formation alkene metathesis

Catalytic bond formation palladium-catalyzed cross-coupling

Catalytic bond formation reactions

Green catalytic direct amide bond formation

© 2024 chempedia.info