Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Soft carbon nucleophiles

Formation of a Tr-allylpalladium complex 29 takes place by the oxidative addition of allylic compounds, typically allylic esters, to Pd(0). The rr-allylpal-ladium complex is a resonance form of ir-allylpalladium and a coordinated tt-bond. TT-Allylpalladium complex formation involves inversion of stereochemistry, and the attack of the soft carbon nucleophile on the 7r-allylpalladium complex is also inversion, resulting in overall retention of the stereochemistry. On the other hand, the attack of hard carbon nucleophiles is retention, and hence Overall inversion takes place by the reaction of the hard carbon nucleophiles. [Pg.15]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

The TT-allylpalladiLim complexes formed as intermediates in the reaction of 1,3-dienes are trapped by soft carbon nucleophiles such as malonate, cyanoacctate, and malononitrile[ 177-179). The reaction of (o-iodophenyl-methyl) malonate (261) with 1,4-cyclohexadiene is terminated by the capture of malonate via Pd migration to form 262. The intramolecular reaction of 263 generates Tr-allylpalladium, which is trapped by malononitrile to give 264. o-[odophenylmalonate (265) adds to 1,4-cyciohexadiene to form a Tr-allylpalladium intermediate via elimination of H—Pd—X and its readdition, which is trapped intramolecularly with malonate to form 266)176]. [Pg.165]

Arylation or alkenylation of soft carbon nucleophiles such as malonate is carried out by using a copper catalyst, but it is not a smooth reaction. The reaction of malononitrile, cyanoacetate, and phenylsulfonylacetonitrile with aryl iodide is possible by using a Pd catalyst to give the coupling products. [Pg.244]

Application of 7r-allylpalladium chemistry to organic synthesis has made remarkable progress[l]. As deseribed in Chapter 3, Seetion 3, Tt-allylpalladium complexes react with soft carbon nucleophiles such as maionates, /3-keto esters, and enamines in DMSO to form earbon-carbon bonds[2, 3], The characteristie feature of this reaction is that whereas organometallic reagents are eonsidered to be nucleophilic and react with electrophiles, typieally earbonyl eompounds, Tt-allylpalladium complexes are electrophilie and reaet with nucleophiles such as active methylene compounds, and Pd(0) is formed after the reaction. [Pg.290]

In addition, a catalytic version of Tt-allylpalladium chemistry has been devel-oped[6,7]. Formation of the Tr-allylpalladium complexes by the oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of the complex with soft carbon nucleophiles are the basis of catalytic allylation. After the reaction, Pd(0) is reformed, and undergoes oxidative addition to the allylic compounds again, making the reaction catalytic.-In addition to the soft carbon nucleophiles, hard carbon nucleophiles of organometallic compounds of main group metals are allylated with 7r-allylpalladium complexes. The reaction proceeds via transmetallation. These catalytic reactions are treated in this chapter. [Pg.290]

The stereochemistry of the Pd-catalyzed allylation of nucleophiles has been studied extensively[5,l8-20]. In the first step, 7r-allylpalladium complex formation by the attack of Pd(0) on an allylic part proceeds by inversion (anti attack). Then subsequent reaction of soft carbon nucleophiles, N- and 0-nucleophiles proceeds by inversion to give 1. Thus overall retention is observed. On the other hand, the reaction of hard carbon nucleophiles of organometallic compounds proceeds via transmetallation, which affords 2 by retention, and reductive elimination affords the final product 3. Thus the overall inversion is observed in this case[21,22]. [Pg.292]

The intramolecular allylation of soft carbon nucleophiles with allylic acetates as a good cyclization method has been extensively applied to syntheses of various three, four, five and six-membered rings, and medium and macrocyclic compounds[44]. Only a few typical examples of the cyclizations are treated among numerous applications. [Pg.299]

The allylic esters 189 and 191 conjugated with cyclopropane undergo regio-selective reactions without opening the cyclopropane ring. The soft carbon nucleophiles are introduced at the terminal carbon to give 190, and phenylation with phenylzinc chloride takes place on the cyclopropane ring to form 192[120]. [Pg.315]

The reaction of 2,3-butadienyl acetate (843) with soft carbon nucleophiles such as dimethyl malonate gives dimethyl 2,3-butadienylmalonate (844)[520]. On the other hand, the reaction of the 2,3-butadienyl phosphate 845 with hard carbon nucleophiles such as Mg and Zn reagents affords the 2-allcyl-1,3-butadiene 846[520,521]. The 3-methoxy-1,3-butadiene 848 is obtained by the reaction of the 2-methoxy-2,3-butadienyl carbonate 847 with organozinc reagent. [Pg.405]

No reaction of soft carbon nucleophiles takes place with propargylic acet-ates[37], but soft carbon nucleophiles, such as / -keto esters and malonates, react with propargylic carbonates under neutral conditions using dppe as a ligand. The carbon nucleophile attacks the central carbon of the cr-allenylpal-ladium complex 81 to form the rr-allylpalladium complex 82, which reacts further with the carbon nucleophile to give the alkene 83. Thus two molecules of the a-monosubstituted /3-keto ester 84, which has one active proton, are... [Pg.465]

Addition of carbon nucleophiles to vinylepoxides is of particular importance, since a new carbon-carbon bond is formed. It is of considerable tactical value that conditions allowing for regiocontrolled opening of vinyloxiranes with this type of nucleophiles have been developed. Reactions that proceed through fonnation of a rr-allyl metal intermediate with subsequent external delivery of the nucleophile, or that make use of a soft carbon nucleophile, generally deliver the SN2 product. In contrast, the Sn2 variant is often the major reaction pathway when hard nucleophiles are employed. In some methods a nucleophile can be delivered selectively at either the Sn2 or SN2 positions by changing the reaction conditions. [Pg.335]

Additions of carbon nucleophiles to vinylepoxides are well documented and can be accomplished by several different techniques. Palladium-catalyzed allylic alkylation of these substrates with soft carbon nucleophiles (pKa 10-20) proceeds under neutral conditions and with excellent regioselectivities [103, 104]. The sul-fone 51, for example, was cyclized through the use of catalytic amounts of Pd(PPh3)4 and bis(diphenylphosphino)ethane (dppe) under high-dilution conditions to give macrocycle 52, an intermediate in a total synthesis of the antitumor agent roseophilin, in excellent yield (Scheme 9.26) [115, 116]. [Pg.335]

Suitably semi-protected pyranoses can react with soft carbon nucleophiles generating mixtures of alditols that can undergo elimination of water and intramolecular addition of the 8-hydroxy group to the intermediate alkenes.94,95... [Pg.49]

Early investigations of additions of soft carbon nucleophiles to simple Michael acceptors like ethyl sorbate date back to the beginning of the 20th century. Already in 1906, Vorlander and coworkers4-6 described additions of malonate anion whereas ethyl sorbate provided the 1,6-addition product6 (equation 2), the 1,4-adduct was obtained from methyl 5-phenyl-2,4-pentadienoate4 (equation 3). Thus, it seems that the regioselectivity... [Pg.647]

In contrast, soft carbon nucleophiles attack at C5. The reaction of 23 with diethylaminopropyne yields alkenyl(amino)pentatetraenylidene complexes (34) by insertion of the C = C bond of the alkyne into the C4=C5 bond of the pentatetrae-nylidene ligand [9]. The reaction is initiated by a nucleophilic attack of the ynamine at C5 followed by ring closure and electrocyclic ring opening (Scheme 3.34). Complexes 34 are obtained as mixtures of s-cis/s-trans isomers. [Pg.121]

Regioselectivity in the Addition of Soft Carbon Nucleophiles to ir-Allylpalladium Complexes 627... [Pg.586]

Loss of stereospecificity in the addition of soft carbon nucleophiles can occur if the rate of nucleophilic attack is slow, due, for example, to extreme steric bulk, e.g. NaCH(SChPh>2,167 of the nucleophile (equation 154). In this case, the initially displaced OAc has sufficient time to return and attack the ir-allyl complex. Acetate anions (vide infra) are capable of either ligand or metal addition, thus scrambling the stereochemistry of the starting allyl acetate. [Pg.616]

Soft carbon nucleophiles (pKt 10-20) have been shown to add to rr-allylpalladium complexes by direct attack at the allyl ligand and to add preferentially to the sterically less congested allyl terminus. Although all the effects responsible for the regioselectivity demonstrated in a particular case cannot easily be accounted for, the discussion will be organized by the apparent dominant controlling factor being exhibited. [Pg.627]

Soft carbon nucleophiles other than malonate derivatives follow similar patterns of regioselectivity, as shown by the addition of cyclopentadiene anion (equation 211)>os and the highly acidic 4-hydroxy-6-methyl-2-pyrone (equation 212).393... [Pg.629]

The nature of the ligands on the palladium in ir-allyl complexes can influence the regioselectivity exhibited by soft carbon nucleophiles. ir-Allylpalladium complexes generated from methylenecycloalkanes provide an example of the effect of ligands on regiochemistry. The complexes derived from methylene-cyclopentane and methylenecycloheptane both exhibit exclusive exocyclic addition by the anion of methyl(methylsulfonyl) acetate with triphenylphosphine ligands on the Pd (equation 223). In contrast, the complex derived from methylenecyclohexane yields a 62 38 ratio of exocyclic endocyclic addition (equation 226). [Pg.631]

The addition of Grignards and organolithium reagents proceeds by attack at the metal center in ir-allylpalladium complexes. The regiochemical selectivity exhibited by these hard carbon nucleophiles with ir-allyl complexes substituted at the termini with alkyl or aryl groups is comparable to the soft carbon nucleophiles (ligand attack) in most cases, with addition occurring predominantly at the less substituted terminus (equations 248 and 249).1591387... [Pg.635]

Addition of MeMgl158 or PhLi160 to ir-allylpalladium complexes derived from methylenenoibomane exhibits selective C—C bond formation at die more hindered allyl terminus. Soft carbon nucleophiles with the same allyl species show the opposite regioselectivity (equation 252).158,160... [Pg.636]


See other pages where Soft carbon nucleophiles is mentioned: [Pg.62]    [Pg.187]    [Pg.464]    [Pg.887]    [Pg.174]    [Pg.862]    [Pg.38]    [Pg.239]    [Pg.284]    [Pg.318]    [Pg.381]    [Pg.436]    [Pg.300]    [Pg.629]    [Pg.633]    [Pg.634]   
See also in sourсe #XX -- [ Pg.457 ]

See also in sourсe #XX -- [ Pg.457 ]




SEARCH



Addition reactions soft carbon nucleophiles

Allylation of Soft Carbon Nucleophiles

Carbon nucleophile

Carbon nucleophiles

Carbon nucleophiles soft nucleophile coupling

Electrophilic reactions soft carbon nucleophiles

Rearrangement soft carbon nucleophiles

Soft carbon

Soft carbon nucleophile

Soft carbon nucleophile

Soft carbon nucleophiles allylic derivatives

Soft carbon nucleophiles coupling

Soft carbon nucleophiles formation

Soft carbon nucleophiles intramolecular addition

Soft carbon nucleophiles reactions

Soft carbon nucleophiles stereochemistry

Soft carbon nucleophiles termination

Soft nucleophile

Soft nucleophiles

Tsuji-Trost reaction soft carbon nucleophile reactions

Tsuji-Trost reaction soft carbon nucleophiles

© 2024 chempedia.info